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Abstract This paper introduces a class of investment project’s profitability metrics that includes the 
net present value criterion (which labels a project as weakly profitable if its NPV is nonnegative), 
the internal rate of return (IRR), the profitability index (PI), the payback period (PP) and its 
discounted counterpart (DPP) as special cases. An axiomatic characterization of this class, as well 
as of the mentioned conventional metrics within the class, is presented. This approach is useful at 
least in three respects. First, it suggests a unified interpretation for profitability metrics as measures 
of financial stability of a project with respect to a collection of scenarios of economic environment. 
Second, it shows that, with the exception of the NPV criterion, a profitability metric is necessarily 
incomplete (i.e., there are incomparable projects). In particular, this implies that any extension of 
the IRR to the space of all projects does not meet a set of reasonable conditions. A similar 
conclusion is valid for the other mentioned conventional metrics. For each of these metrics, we 
provide a complete characterization of pairs of compatible projects and describe the largest subset 
of projects to which the metric can be unambiguously extended. Third, it determines the conditions 
under which the use of one metric is superior to the others. 

 
Keywords capital budgeting; net present value; internal rate of return; (discounted) payback period; 
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1. Introduction 
The most common capital budgeting techniques include the net present value (NPV), internal 

rate of return (IRR), payback period (PP), discounted payback period (DPP), and profitability index 
(PI). Though the literature seems to agree that NPV outperforms the others as an investment 
criterion, being convenient numerical representations of various aspects of an investment project, 
the other metrics continue to be widely used in practice (Ryan and Ryan, 2002; Brounen et al., 
2004). Moreover, there are situations when calculation of a particular metric is prescribed by the 
law.1 This paper aims to provide a unified perspective on these five metrics as profitability 
measures. 

                                                 
E-mail address: mvsokolov@eu.spb.ru 
I am grateful to Ekaterina Polyakova for helpful comments that greatly improved the paper. 
 
1 One such situation is documented in Promislow (1997). The criminal code of Canada prohibits to lend 
money at an annual effective rate exceeding 60%. Similar restrictions are set out in the criminal codes of 
Japan and several states of the U.S. One, therefore, has to evaluate the IRR of a cash flow associated with a 
loan to verify its lawfulness. 
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The paper employs an axiomatic approach to characterize project’s profitability metrics. The 
characterized metrics include, as a proper subset, a particularly nice class possessing a multi-utility 
representation with respect to a set of NPV criteria (the NPV criterion labels an investment project 
as weakly profitable iff its NPV is nonnegative). Elements of this class enjoy a unified 
interpretation as measures of financial stability of a project with respect to a set of scenarios of 
economic environment. We show that IRR, PP, DPP, and PI belong to this class. The multi-utility 
representation is a straightforward generalization of the one studied in Bronshtein and Akhmetova 
(2004) and helps to answer several questions of interest. For instance, the literature contains 
numerous efforts to modify the notion of IRR in order to be well defined for every project. To 
mention just a few, Arrow and Levhari (1969), Cantor and Lippman (1983), Promislow and Spring 
(1996), and Weber (2014) suggest unconditional solutions, whereas the balance function approach 
(Teichroew et al., 1965; Spring, 2012), the modified IRR (Lin, 1976; Beaves, 1988; Shull, 1992), 
and the average IRR (Magni, 2010, 2016) provide solutions conditional on exogenously given, 
respectively, reinvestment rate, reinvestment rate and cost of capital, and capital stream. We show 
that except a somewhat degenerate case that corresponds to the NPV criterion, a profitability metric 
is necessarily incomplete (i.e., there are incomparable projects). This implies that any extension of 
the IRR (as well as of any other profitability metric, including PI, PP, and DPP) to the space of all 
projects necessarily does not satisfy a set of natural axioms. In the case of IRR, a similar 
impossibility result was established in Promislow (1997). To overcome this problem, the literature 
suggests to reduce the space of projects to those for which the profitability metric is well defined (in 
the case of IRR, e.g., to the space of conventional/normal investments that have only one change of 
sign in their net cash flow streams). In this paper, we follow a different approach by allowing for 
incomparable projects. This approach suggests a natural extension of the IRR to a larger class of 
projects and provides a complete characterization of pairs of projects that are compatible in the 
sense of IRR. Similar results are provided for the other conventional metrics. 

With the exception of the NPV criterion, the investment appraisal literature seems to be 
controversial with respect to conditions under which the use of one metric is superior to the others. 
Our analysis suggests that the choice of a particular metric should be determined by the source of 
uncertainty an investor faces. Namely, the NPV criterion should be used under complete certainty, 
IRR is preferable if the investor faces uncertain discount rate, PI should be chosen under the risk of 
reduction (in the form of an unknown scale factor) of future cash flow, whereas PP and DPP are 
superior under the risk of project truncation (say, for external environmental reasons). This also 
provides a clear interpretation for combinations of these metrics. Since there are other sources of 
uncertainty, the collection of conventional metrics (IRR, PI, PP, and DPP) cannot be considered as 
comprehensive. For instance, investment in the real sector may face uncertain intensity of the 
project implementation or risk of postponement; these sources of uncertainty induce new 
profitability metrics which, however, reduce, respectively, to IRR and PI in the case of exponential 
discounting. 

We consider several proper subsets of interest of the space of investment projects, in 
particular, the set of conventional investments (i.e., projects in which a series of cash outflows is 
followed by a series of cash inflows) and the set of projects that require an initial cash outflow. For 
each of these subsets, we characterize those profitability metrics that make every pair of projects 
from the subset comparable. 

Finally, the paper presents characterizations of the conventional profitability metrics. In 
particular, we show that a profitability metric is well defined for each investment project requiring 
an initial outlay if and only if it is consistent with PI. Furthermore, a profitability metric is well 
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defined for investment operations with only two transactions and is stable under reduction (in the 
form of a scale factor) of future cash flow if and only if it is consistent with PI. IRR is known as an 
extension of the rate of return (the yield rate) defined over the set of investment operations with two 
transactions (an initial outlay and a final inflow). Though there are other extensions, e.g., the 
metrics introduced in Arrow and Levhari (1969) and Bronshtein and Skotnikov (2007), we show 
that the IRR is a unique one satisfying a set of reasonable conditions. A genuine counterpart of the 
IRR under nonexponential discounting is also presented and its axiomatic characterization is 
provided. Finally, a profitability metric is well defined for investment operations with only two 
transactions and is stable under truncation (that is, the ordering it induces is invariant with respect to 
the operation of project truncation) if and only if it is a refinement of the DPP. This refinement 
reduces to the conventional DPP for projects with continuous cash flows and coincides with the 
DPP obtained using linear interpolation of the cumulative discounted cash flow for projects with 
discrete cash flows. Note that it is a common practice to use linear interpolation to evaluate DPP 
(e.g., see Götze et al., 2015, p. 72). Our result, therefore, provides a formal justification for this 
practice. 

Important contributions to the literature on axiomatic approach to profitability metrics include 
Promislow and Spring (1996), Promislow (1997), and Vilensky and Smolyak (1999). In particular, 
Promislow and Spring (1996) proposed a general measure-theoretic construct for the IRR-like 
profitability metrics. Promislow (1997) is, to our knowledge, the first formal impossibility result 
that shows that the IRR cannot be unambiguously extended to the space of all projects. By allowing 
for incomparable projects, the author provided various classes of profitability metrics, which are 
closely related to those we derive. Vilensky and Smolyak (1999) (the paper, which is unfortunately 
almost unknown in the field) presented a characterization of the IRR as well as of its extensions to 
nonexponential discounting and stochastic cash flows. An axiomatic approach to valuation of cash 
flow streams (Norberg, 1990; Promislow, 1994; Spring, 2012) and, more generally, utility streams 
(Chichilnisky, 1996; Neyman, 2023, to mention just a few) provides some significant related 
results. 

The paper is organized as follows. Section 2 attempts to formalize the concept of profitability. 
It introduces the main object of our analysis, called a profitability ordering, by means of an 
axiomatic approach. Section 3 studies profitability orderings that are total (complete) being 
restricted to a given subset of interest. In particular, we characterize profitability orderings that are 
total on the set of conventional/normal investments. Section 4 shows that various standard capital 
budgeting metrics, including IRR, PI, PP, and DPP, are induced by profitability orderings. With the 
help of this result, for each of these metrics we characterize the largest subset of projects on which 
it is unambiguously defined. All proofs and auxiliary results are given in the Appendix. 

 
 

2. A profitability ordering 
We begin with basic definitions and notation. ��R , �R , and R  are the sets of positive, 

nonnegative, and all real numbers, respectively. ],[:R f��f  and ],0[:R f� �  are the extended 
real and nonnegative real numbers. We equip subsets of R  with the usual topology. For a 
topological space, the topological closure and interior operators are denoted by cl  and int . The 
indicator function of a set S  is denoted by SI . 
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Let P  be the space of right-continuous regulated real-valued functions on �R , that is, P�x  
if RR: o�x  is right-continuous and possesses finite left limits )(lim:)( W

W
xtx

t�o
 �  for all ���Rt  

and )(lim:)( W
W

xx
�fo

 �f . Being endowed with the supremum norm )(sup:
R

txx
t ��

 , P  becomes a 

Banach space (Monteiro et al., 2018, Theorem 4.2.1, Corollary 4.2.4). Set }0)(inf:P{:P
R

t� 
��� txx

t
 

and }0)(inf:P{:P
R

!� 
���� txx

t
. Note that �P  is a closed convex cone and ���  PintP . We write 

yx t  (resp. yx ! ) if ��� Pyx  (resp. ���� Pyx ). For any ��R,tW , put 

¯
®


�
t

 
W
W

W t
t

t
,0
,1

:)(1 .  

Note that ���P10  and, therefore, it is an order unit for the ordering cone �P  in the vector space P  

(that is, for every P�x  there is ���RO  such that xt01O ). An element P�x  is interpreted as a 
project’s cumulative cash flow so that )(tx  is the balance of the project – the difference between 
cumulative cash inflows and cash outflows – at time t .2 �P  is the set of projects with the property 
that the cumulative cash inflow all the time dominates the cumulative cash outflow. The project W1  
is interpreted as receiving a money unit at time W . It is known (Monteiro et al., 2018, p. 82) that P  
is the closure of the linear span of }R,1{ ��WW  in the space of bounded functions on �R  endowed 
with the topology induced by the supremum norm. Thus, P  is a natural extension of the practically 
relevant space of investment projects with finitely many transactions. 

The topological dual of P  is denoted by *P . We equip *P  with the weak* topology. The dual 
cone of a set PC�  is given by }C0)(:P{:C * ��t� xxFFD , the dual cone of a set *PK �  is 

defined in a similar fashion, }K0)(:P{:K ��t� FxFxD . The set of all additive (i.e., 
)()()( yxFyFxF � �  for all P, �yx ) and positive (i.e., �� � R)P(F ) functionals RP: oF  

satisfying 1)1( 0  F  is denoted by &(. . &(.  is interpreted as the set of possible net present 
value functionals. A routine argument shows that every additive and positive functional is 
homogeneous and continuous, so that }1)1(:P{ 0  � � FF D&(. . Denote by �  the set of all 

nonnegative and nonincreasing functions �� oRR:D  satisfying 1)0(  D . Using a result on the 

structure of the dual space *P  (Monteiro et al., 2018, Theorem 8.2.8) it can be shown that 
&(.�F  if and only if there exists ��D  such that 

³
f

� 
0

d)0()( xxxF D , (1) 

where the integral is the Kurzweil-Stieltjes integral (see Lemma 11 in the Appendix for details). As 
)1()( tFt  D , i.e., )(tD  is the present worth of receiving a money unit at time t , in what follows D  

will be called a discount function.3 Identities )1()( tFt  D  and (1) define a one-to-one 
correspondence between the sets &(.  and � . In what follows, this allows us to identify a 

                                                 
2 In this paper, we identify an investment project with the cumulative cash flow it generates. We prefer to 
describe a project by means of the cumulative (rather than net) cash flow as this setup enables a uniform 
treatment of discrete- and continuous-time settings. 
3 Note that in most models involving discounting nonincreasingness of a discount function is an assumption, 
whereas in our model this is a consequence. 
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discount function with the NPV functional it induces. We use the notation )(DF  for an NPV 
functional whenever we want to emphasize that it is induced by a discount function D . The support 
of a discount function D  is denoted by }0)(:R{:}{supp !� � tt DD . The discount function that 

corresponds to the extremely impatient case is denoted by 
¯
®


!
 

 
0if0
0if1

:)(
t
t

tF . 

Projects profitabilities in this paper are ranked by means of a binary relation ;  on P . The 
statement yx ;  means that project x  is at least as profitable as y . The symmetric and asymmetric 
parts of ;  are denoted by ;  and ~ . The upper and strict upper contour sets of ;  at P�x  are 

}:P{:)(U xyyx ;; �  and }:P{:)(U xyyx ;; � . The lower and strict lower contour sets, 

)(L x;  and )(L x; , are defined in a similar fashion. ;  is said to be a profitability ordering (PO for 

short) if the following four conditions hold. 
Nontrivial preorder (NT): ;  is nontrivial (i.e., PPuz; ), reflexive, and transitive. 
Monotonicity (M): yx t  & zy ;  �  zx ; . 
Upper semicontinuity (USC): for every P�x , )(U x;  is closed. 

Internality (I): for every P�x , the sets )(L x;  and )(U x;  are closed under addition.4 

Axiom (NT) states that projects are comparable in a coherent way. In view of the results on 
nonextendability of the IRR-like profitability metrics to the space of all projects (Promislow, 1997; 
Vilensky and Smolyak, 1999), we do not require ;  to be total (complete). Axiom (M) ensures that 
higher cash flow provides higher profitability. Note that the combination of conditions (NT) and 
(M) holds if and only if ;  is nontrivial, transitive and yx t  �  yx ; . Axiom (USC) is a standard 
regularity condition, which assures that small perturbations of cash flows result in a minor 
perturbation of the ordering. Finally, axiom (I) relates profitability of a pool of projects with 
profitabilites of its components. In particular, it makes valid the following natural guidance: to 
guarantee the target level of profitability for a pool of projects it suffices to keep the target for each 
project in the pool. The axiom also implies yx ;  �  yyxx ;; � , that is, union of a project 
with a more (resp. less) profitable one increases (resp. decreases) profitability of the union. This 
condition is appealing in practice, since it allows an investor to decompose a complex investment 
decision into separate evaluation of individual investment projects. Axiom (I) is closely related to 
the decomposition axiom used in Promislow (1997) to classify loans by their annual effective rate. 
A stronger form of the internality axiom was also used in Vilensky and Smolyak (1999, section 1.4) 
to characterize IRR. 

The general structure of a PO is described in the following proposition. 

Proposition 1. 
Conditions (NT), (M), (USC), (I) are independent (i.e., any three of them do not imply the 

fourth). For a binary relation ;  on P  the following statements are equivalent: 
(a) ;  is a PO; 

(b) there is a nonempty family &(.- 2�  of nonempty subsets of &(.  such that for all P�z  
the set �

D

D

K:K

)K\P(
�� z-

 is closed under addition and 

                                                 
4 A set PC�  is said to be closed under addition if CCC �� . 
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yx ;  �  )()(
KK

yIxI DD t  for all -�K . (2) 
Moreover, without loss of generality, elements of the family -  in part (b) can be chosen closed (in 
the weak* topology) and convex. 

 
Note that the right-hand side of the equivalence (2) can also be represented as 

}K:K{}K:K{ DD ����� yx -- . In what follows, a family &(.- 2�  satisfying the conditions 
of part (b) of Proposition 1 is called a representation of the PO ; . Clearly, a representation is 

nonunique. A particular way to choose it is }P,))(U{( �� zz &(.- D
; . 

Further facts about POs are collected in the next lemma. 

Lemma 1. 
A PO ;  enjoys the following properties. 

1º. xx ~O  for all P�x  and 0!O . 
2º. ;  is not lower semicontinuous (i.e., it is not true that )(L x;  is closed for every P�x ). 

3º. There are projects x  and y  such that yx !  and yx ~ . 
4º. There are projects x  and y  such that yx ; , whereas yxx �~  (similarly, there are x  and 
y  such that yx ; , whereas yxy �~ ). 

5º. If x;01  and x�;01 , then x  and x�  are incomparable. 
6º. The intersection of a collection of POs is a PO. 

 
Property 1º states that profitability takes no account of the investment size and hence is a 

relative measure. All known measures of profitability satisfy this property. 
Upper and lower semicontinuity are desirable properties as cash flows contain future 

components which are measured with an error. However, unless 01~x , we have )(L0 x;� , so that 

lower semicontinuity does not hold (property 2º). 
Though yx t  �  yx ; , strictly higher cash flow does not necessarily imply strictly higher 

profitability (property 3º). If yx ; , then one would expect yyxx ;; �  (recall that, by (I), 
yyxx ;; � ). For instance, if two investment projects have the IRRs r  and s  such that sr � , 

then the IRR of their union, if it exists, falls strictly between r  and s . Unfortunately, the strict 
inequalities cannot hold for every pair of comparable projects (property 4º). 

It is widely recognized in the literature that ambiguity with the IRR is a consequence of 
change of the status of the investor from that of a lender to that of a borrower for mixture projects 
(Gronchi, 1986; Hazen, 2003; Hartman and Schafrick, 2004; Promislow, 2015, section 2.12; Magni, 
2016). Property 5º shows that every profitability metric suffers from the same drawback. The 
problem is that pure investment and pure financing, no matter how they are defined, differ by sign 
and, therefore, by property 5º, are incompatible. 

Finally, property 6º provides a way to aggregate multiple profitability criteria. 
An example of a PO is given by an NPV criterion. A PO ;  is said to be an NPV criterion if it 

has a singleton representation, that is, there is &(.�F  such that yx ;  �  )()(
}{}{
yIxI FF DD t . 

An NPV criterion partitions P  into the sets of (nonstrictly) profitable and not profitable projects 
with, respectively, nonnegative and negative NPV. 

The next proposition shows that an NPV criterion is the only total (complete) PO. 



 7 

Proposition 2. 
For a PO ;  the following statements are equivalent: 

(a) ;  is an NPV criterion; 
(b) ;  is total (complete); 
(c) for every P�x , )(L x;  is closed under addition; 
(d) for every P�x , )(U x;  is closed under addition. 

 
According to Proposition 2, unless ;  is an NPV criterion, the union of projects with strictly 

lower (resp. higher) profitabilities than x  does not necessarily produce strictly lower (resp. higher) 
profitability than x . 

As already noted in the introduction, the literature contains numerous efforts to modify the 
notion of IRR in order to be well defined for every project. As we will show in section 4.1, the IRR 
can be identified with a utility representation of the restriction a particular PO. Proposition 2 shows 
that, except a somewhat degenerate case that corresponds to an NPV criterion, a PO is incomplete. 
Therefore, such efforts necessary result in a ranking that does not satisfy the set of axioms 
introduced above. A similar impossibility result was established in Promislow (1997). Proposition 2 
shows that the same conclusion holds for every profitability metric. 

Example 1. 
The criminal code of Canada prohibits to lend money at an annual effective rate exceeding 

60%. How to interpret this clause for loans whose cash flows have no IRR? This problem is studied 
in details in Promislow (1997). 

Let PU�  be a set interpreted as the set of usurious (illegal) loans from lender perspective. 
The following conditions on U  and U\P:N   (the set of nonusurious loans) seem to be 
reasonable. 
1º. yx t  & U�y  �  U�x . 
2º. N  is open. 
3º. The sets U  and N  are closed under addition. 
4º. U16.110 ��� t

t  for each 0!t ; N110 ��� ta , whenever 0!t  and ta 6.1� . 
Condition 1º states that a loan with higher lender cash flow than an usurious loan is usurious. 

According to 2º, a small perturbation of an nonusurious loan is nonusurious. By condition 3º, U  
and N  are closed under the operation of union of loans. Finally, condition 4º states that simple 
loans with two transactions – the initial lending and final repayment – having an annual effective 
rate of (resp. less than) 60% are usurious (resp. nonusurious). 

In order to characterize U  define the binary relation ;  over P  by yx ;  �  )()( UU yIxI t . 

From conditions 1º–3º it follows that ;  is a total PO and, therefore, by Proposition 2, it is an NPV 
criterion. Condition 4º implies that the NPV is induced by the discount function tt �6.16 . The 
obtained result suggests to correct the statement of the criminal code and classify a loan with a 
lender cash flow P�x  as nonusurious (resp. usurious) if 0)( �xF  (resp. 0)( txF ), where F  is 

the NPV functional induced by the discount function tt �6.16 . The suggested rule is consistent 
with the old one: if the lender cash flow x  possesses the IRR and it is less than (resp. equals or 
exceeds) 60%, then 0)( �xF  (resp. 0)( txF ). 
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A PO ;  is said to be symmetric (SPO for short) if it is the intersection of a collection of NPV 
criteria, that is, there is a nonempty set &(.� �  such that 

yx ;  �  )()(
}{}{
yIxI FF DD t  for all ��F . (3) 

Note that, by property 6º in Lemma 1, the binary relation defined by (3) is indeed a PO. The right-
hand side of the equivalence (3) can also be represented as �� ��� DD }{}{ yx . The multi-utility 
representation (3) has a straightforward interpretation. Identify each element of �  with a possible 
scenario of economic environment (the environment affects various economic factors, including 
interest rates, and, therefore, the discount function). Then, according to (3), yx ;  if and only if x  
is profitable (i.e., has nonnegative NPV) in a larger set of scenarios than y . The interpretation 
shows that an SPO measures financial stability of a project with respect to a set of scenarios. In the 
case of projects with finitely many transactions, two particular SPOs (with &(.�   and �  
being the set of NPV induced by the family of exponential discount functions) were studied in 
Bronshtein and Akhmetova (2004). In what follows, we mainly exploit SPO due to its simple 
representation and particularly nice interpretation. 

The set �  in (3) is called a representation of the SPO ;  (we also say that �  represents or 
induces ; ). A representation of an SPO is in general nonunique. For instance, if &(.�GF, , 

GF z  and W  is a dense subset of )1,0( , then }W,)1({ ��� wGwwF  and 
)}1,0(,)1({ ��� wGwwF  represent the same SPO. In what follows, by the representation of an 

SPO ;  we mean the greatest subset of &(.  representing ; , that is, 

� DD )}()(:{
}{}{
yIxIF FF t�&(. , where the intersection is taken over all pairs P, �yx  such that 

yx ; . 
The structure of an SPO with a closed and convex representation is described in the following 

example. 

Example 2. 
Given a nonempty closed (in the weak* topology) set &(.+ � , let �  be the closed convex 

hull of +  and ;  be the SPO induced by � . To motivate the idea behind ;  note that since 

���P10 , the set &(.  is compact (Jameson, 1970, Theorem 3.8.6) and, therefore, so is � . As +  
is closed, it contains the closure of the set of extreme points of �  and, by the integral form of the 
Krein-Milman theorem, every ��F  can be treated as the expected NPV under a probability 
measure over + . Thus, the SPO ;  induced by �  can be interpreted as a measure of project’s 
financial stability under (unknown) probabilistic uncertainty with respect to the set of scenarios + . 

One can show (see Lemma 12 in the Appendix) that 
yx ;  �  0)(minsup

R
t�

�� �

yxF
F

O
O +

. (4) 

Moreover, if +  is not necessarily closed, then min  in (4) should be replaced by inf . In particular, 
if +  is finite, then yx ;  if and only if there exists ��RO  such that 0)( t� yxF O  for all +�F . 
Or, in words, yx ;  if and only if the project y  can be rescaled such that x  has nonstrictly higher 
NPV than the rescaled y  in every scenario from + . 

To illustrate, consider the SPO ;  induced by &(. . From representation (4) we deduce that 
yx ;  if and only if for any 0!H , there exists ��RO  such that yx OH t� 01 . 
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3. Completeness on a predetermined subset of projects 
Though a PO is in general incomplete, one may require it to be total (complete) being 

restricted to a predetermined subset of interest PQ� . For instance, a generic net cash flow stream 
for investment in a stock is composed an initial outlay associated with buying the stock, dividends 
received during the holding period, and the gain that occurs when the stock is sold. Therefore, 
totality over the set of projects in which an initial capital outflow is followed by a series of cash 
inflows is a desirable property for a PO used to evaluate stock performance. To be more precise, 
given PQ� , a PO is said to be Q -complete if its restriction to Q  is total (i.e., Q  is a chain). Q -
completeness seems to be a reasonable condition for a PO to be useful for evaluation projects from 
Q . At least when Q  is second countable (e.g., this holds in the practically relevant case of discrete 
projects, i.e., if Q  is a subset of the closure of the linear span of ,...}1,0,1{  WW ) the restriction 
admits an upper semicontinuous utility representation due to the Rader theorem (Rader, 1963). 

Though being rather trivial, the following lemma is a useful tool in verifying Q -
completeness. It shows that a PO is Q -complete if and only if elements of its representation can be 
totally preordered in a natural way. 

Lemma 2. 
Let PQ� , ;  be a PO with a representation -  and ⊒ be the preorder over -  defined by 

K⊒L  �  QLQK ��� DD . Then ;  is Q -complete if and only if ⊒ is total. 
 
Given PQ�  and &(.� � , a preorder ≽ on �  is said to be induced by Q  if for any 

��GF, , F ≽G  �  Q}{Q}{ ��� DD GF . The relations ≻ and ~ are defined as usual. The 
relation F ≽G  means that scenario F  is more favorable than G  for an investor considering 
projects from Q : each project Q�x  which is profitable under G  (i.e., 0)( txG ) is also profitable 
under F . It follows from Lemma 2 that an SPO with a representation �  is Q -complete if and only 
if ≽ is total. 

In the rest of this section, we describe the structure of Q -complete SPOs for Q  comprising 
various types of investments. These results relate completeness over several notable subsets of 
projects and totality of the restriction of well-known partial orderings over &(. . Put 

 :Q1 { :P�x  0)0( �x  and x  is nondecreasing}, � 12 Q:Q { :P\P ��x  0)0( dx  and there is 

���RW  such that x  is nonincreasing (resp. nondecreasing) on ),0[ W  (resp. ),[ f�W )}, 
 :Q3 { :P\P ��x  there is ���RW  such that x  is nonpositive on ),0[ W  and nonnegative on 

),[ f�W }, }0)0(:P{:Q4 �� xx , and  :Q5 { :P�x  there is ���RW  such that 0)( �Wx  and x  is 

nonpositive on ],0[ W }. The set 1Q  ( 2Q ) consists of conventional investments in which an initial 
cash outflow (a series of cash outflows) is followed by a series of cash inflows. The set 3Q  
comprises investments whose cumulative cash flows have one change of sign (this class of projects 
is studied, e.g., in Norstrøm, 1972). Finally, 4Q  ( 5Q ) comprises all investments, i.e., the projects 
that require an initial cash outflow (outflows). 
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We endow &(.  (or, equivalently, � ) with the three transitive binary relations. Let 
&(.�GF,  and let D  and E  be the discount functions associated with F  and G , respectively. 

We write F ≽1G  if ED t  (pointwise). The relation ≽1 describes the strength of discounting. We 
write F ≽2G  if }{supp}{supp ED   and the function )()( ttt ED6  defined on }{supp E  is 
nondecreasing. Provided that the discount functions are positive and differentiable, F ≽2G  holds if 
and only if the instantaneous discount rate under E  dominates that under D , )(ln)(ln c�tc� DE . 
≽2 is known as the patience ordering (e.g., see Quah and Strulovici, 2013, section II.C). Finally, we 
write F ≽3G  if D  and E  are differentiable, 0�cD , 0�cE , and the function )()( ttt ED cc6  is 
nondecreasing. ≽3 is the relative decreasing impatience (or spread seeking) relation studied in 
Rohde (2009). Note that ≽1, ≽2, and the restriction of ≽2�≽3 to the subset of discount functions 
possessing negative derivative are partial orderings. Moreover, ≽2�≽1, whereas ≽3�≽1. 

The next two lemmas describe the structure of 1Q - and 2Q -complete SPOs. 

Lemma 3. 
Let ;  be an SPO with a representation � . Put }0,1,11{:Q 01 !t�� c WW aa . The following 

conditions are equivalent: 
(a) ;  is 1Q -complete; 
(b) ;  is 1Qc -complete; 
(c) the restriction of ≽1 to �  is total. 

Lemma 4. 
Let ;  be an SPO with a representation � . Set }0,0,11{:Q2 !�d�� c atat WW  and 

}1,0,11{:Q2 t�d�� cc atat WW . The following conditions are equivalent: 

(a) ;  is 2Q -complete; 
(b) ;  is 2Qc -complete; 
(c) the restriction of ≽2 to �  is total. 

If each NPV functional from �  has a positive discount function, then (a)–(c) are also 
equivalent to 
(d) ;  is 2Q cc -complete. 

 
Lemma 3 (resp. Lemma 4) states that an SPO with a representation �  is 1Q -complete (resp. 

2Q -complete) if and only if for any ��GF, , either ED d  or ED t  (resp. }{supp}{supp ED   
and the function )()( ttt ED6  defined on }{supp E  is monotone), where D  and E  are the 
discount functions associated with F  and G . It also shows that to check 1Q -completeness (resp. 

2Q -completeness) it is sufficient to test it on the set of projects 1Qc  (resp. 2Qc ) possessing only two 
transactions. 

Our next result characterizes 3Q -complete SPOs. 

Lemma 5. 
Let ;  be an SPO with a representation � . Assume that for every ��F , the discount 

function associated with F  has a negative derivative. Then the following conditions are equivalent: 
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(a) ;  is 3Q -complete; 

(b) the restriction of ≽2�≽3 to �  is total. 
 
In order to formulate the next result we introduce the following notation. For }{\ FD �� , 

denote by )(D
JH , ])0(1,0[ �� DJ  the NPV functional induced by the discount function 

FJJD )1( �� . Set )()( : FF
J FH   for all ��RJ . Note that ))0()(()0()( )()( xxFxxH �� DD

J J . 

Lemma 6. 
Let ;  be an SPO with a representation � . Set }RR),,,(,111{:Q 22

04 ��u���� c WW tbaba t , 

}RRR),,,,(,111{:Q 22
5 ����� uu���� c WW tsbaba stss . The following conditions are equivalent: 

(a) ;  is 4Q -complete (resp. 5Q -complete); 

(b) ;  is 4Qc -complete (resp. 5Qc -complete); 

(c) there is ��D  and ]1,0[�*  (resp. ]1,0(�* ) such that },{ )( *� JD
JH� . 

 
As we will show in section 4.1, the IRR is a utility representation of the restriction of the SPO 

induced by the family of exponential discount functions, }R,{ �
� �OOtet6 . Clearly, the restriction 

of ≽2 and ≽2�≽3 to this family is total. Thus, by Lemmas 4 and 5, this SPO is 2Q - (and, hence, 

1Q -) and 3Q -complete. This is a reformulation of well-known facts that a project whose either net 
or cumulative cash flow has one change of sign possesses the IRR (Norstrøm, 1972). Lemmas 3–5 
extend these results by describing the general structure of 1Q -, 2Q -, and 3Q -complete SPOs. On 
the other hand, it is known that an investment project with at least three transactions may have no 
IRR. That is, the SPO induced by the family of exponential discount functions is not 4Qc -complete. 
One can use Lemma 6 to suggest a relevant profitability measure for projects from 4Qc  (or, 
equivalently, 4Q ). Namely, from Lemma 6 it follows that if an SPO ;  is 4Q -complete, then there 

is &(.�F  such that for any 4Q, �yx , )()( yPIxPI FF t  �  yx ; , where FPI  is the 

profitability index defined by ))0(())0()((:)( xxxFxPI F �� . A partial converse to this assertion 
is established in section 4.3. This suggests a profitability index as a natural profitability measure for 
projects from 4Q . 

Set }0)0(:P{:Q5 d� cc xx . From the proof it follows that 5Q -completeness in part (a) of 

Lemma 6 can be replaced by 5Q cc -completeness without changing the result. Note that 4Q  (resp. 

5Q cc ) is an open (resp. closed) half-space of P  induced by the NPV functional )0(xx6 . The 
statement “(a)� (c)” of Lemma 6, therefore, can be generalized as follows. 

Lemma 7. 
Let ;  be an SPO with a representation � . For a given nonzero functional *P�G , put 

}0)(:P{:Q �� xGxG , }0)(:P{:Q d� c xGxG . If ;  is GQ -complete, then there is &(.�F  

such that �  lies in the linear span of },{ GF  in *P . In particular, if &(.�G , then ;  is GQ -

complete (resp. GQc -complete) if and only if there are &(.�F  and ]1,0[W�  (resp. ]1,0(W� ) 
such that }W,)1({ ��� wGwwF� . 
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By Lemma 7, given a nonzero functional &(.�G , if an SPO ;  is GQ -complete, then 

there is &(.�F  such that for any Gyx Q, � , )()( yRIxRI F
G

F
G t  �  yx ; , where F

GRI  is the 

ratio index defined by )()(1:)( xGxFxRI FG � . A partial converse to this assertion is established 

in section 4.3. This shows that ratio indices F
GRI , &(.�F  are natural profitability measures for 

projects from GQ . More results on the indices FPI  and F
GRI  are obtained in section 4.3. 

Given nonzero *
1 P,..., �nGG , a minor modification of the proof of Lemma 7 shows that if an 

SPO with a representation �  is D},...,{ 1 nGG -complete, then there is &(.�F  such that �  lies in 

the linear span of },...,,{ 1 nGGF . 
 
 

4. Profitability metrics 
We proceed by describing the class of real maps defined on a subset of P  that could be used 

for profitability measurement purposes. A real-valued function M  defined on a nonempty set 
PQ�  is said to be a profitability metric if there exists an SPO ;  such that for any Q, �yx , 
yx ;  �  )()( yMxM t . An SPO satisfying this property is said to be M -consistent. Put 

differently, a profitability metric is a utility representation of the restriction of an SPO. 
Recall that the intersection of a collection of POs (SPOs) is a PO (SPO). Therefore, for any 

profitability metric M , the set of all M -consistent SPOs (treated as subsets of PPu ) contains the 
least element. This element describes the unambiguous part, which agrees with every M -consistent 
SPO. Given a profitability metric RQ: oM , the greatest set QD �  such that the least M -
consistent SPO is D -complete is said to be the natural domain of M . The restriction of the least 
M -consistent SPO to the natural domain is said to be the natural extension of M . In what follows, 
a utility representation of the natural extension (if any) is also, rather loosely, referred to as the 
natural extension of M . The natural domain determines to what extent the profitability metric can 
be uniquely extended and this unique extension is referred to as the natural one. 

To motivate the idea behind the introduced notions consider the IRR capital budgeting 
technique. It is well known that the IRR is well defined for conventional investment projects that 
have only one change of sign in their net cash flow streams. The investment appraisal literature 
addresses the question of what is the largest set of projects for which the IRR is unambiguously 
defined. If the IRR (considered as a real-valued function defined on the set of conventional projects) 
is a profitability metric, then the natural domain answers the question and the natural extension 
defines a unique extension of the IRR to the natural domain. 

The natural domain need not exist. For instance, a constant function M  on �P  is a 
profitability metric with the least M -consistent SPO induced by &(. . For every )P(P ��� ���x  
and },{PD xx ��� � , this SPO is }{P x�� - and }{P x��� -complete, but not D -complete as x  
and x�  are incomparable by property 5º in Lemma 1. Thus, M  has no natural domain. A simple 
sufficient condition for the existence of the natural domain is given in the following lemma. 

Lemma 8. 
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Given a profitability metric RQ: oM , PQ� , set � DD )}()(:{
}{}{
yIxIF FF t� &(.� , 

where the intersection is taken over all pairs Q, �yx  such that )()( yMxM t . The following 
statements hold. 
(a) �  is the representation of the least M -consistent SPO. 
(b) If the preorder ≽ over �  induced by Q  is antisymmetric (i.e., F ≽G  & G ≽F  �  GF  ), 
then the natural domain D  of M  exists and admits the representation 

� DD )}()(:P{D
}{}{
xIxIx GF t� , (5) 

where the intersection is taken over all pairs ��GF,  such that F ≽G . 
 

Example 3. 
To illustrate the introduced notions consider the function ),1[Q: 1 f�ocS  (where 1Qc  is 

defined in Lemma 3) given by bb  �� :)11( 0 WS . 1�S  is just the undiscounted net benefit of a 

project from 1Qc . One can show (see Lemma 14 in the Appendix) that S  is a profitability metric 
whose natural extension is the undiscounted profitability index. To be more precise, S -consistent 
SPOs are induced by },{ )1( 0 *�JJH , where ]1,0[)1,0( �*� . The representation of the least S -

consistent SPO is ]}1,0[,{ )1( 0 �JJH . The natural domain of S  is 

}0)(,0)0(:P{\PD ��ft� xxx  and the natural extension of S  is the total preorder over D  

with a utility representation �o RD:S  given by 

°
¯

°
®



t�ftf�
t�f����f
��f�

 
0)(and0)0(if
0)(and0)0(if))0(())0()((
0)(and0)0(if0

:)(
xx
xxxxx
xx

xS . (6) 

Note that if 0)0( �x  and 0)( t�fx , then )()( xPIx F S , where F  is the NPV functional induced 
by the discount function 01 . 

 
We proceed by showing that various standard capital budgeting metrics, in particular, IRR, 

PP/DPP (more accurately, an order-reversing transformation of PP/DPP), PI as well as several other 
ratio type indices, are profitability metrics. We describe their natural domains and natural 
extensions. 

 
 

4.1. IRR 
The purpose of this section is threefold. First, we introduce a generalization of the 

conventional notion of IRR to nonexponential families of discount functions. Second, we show that 
the IRR (as well as the generalization) is a profitability metric, find its natural domain and natural 
extension, describe the IRR-consistent SPOs, and provide their axiomatic characterization. Third, 
we show that the conventional IRR is a unique profitability metric whose restriction to 2Q cc  (where 

2Q cc  is defined in Lemma 4) is the rate of return, i.e., the metric that sends each project 

2Q11 cc��� �Wtt b  to its yield rate, bln)1( W . 
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The notion of the internal rate of return does not necessary assume exponential discounting 
and can formally be applied to a parametric family of discount functions indexed by a parameter 
interpreted as the discount rate. For instance, assuming power discounting (Harvey, 1986), one can 
define the internal rate of return of a project x  as the value of the discount rate ��RO  under which 

0)(  xFO , where OF  is the NPV functional associated with the discount function O�� )1( tt6 . 
The following definition introduces a generic parametric family of discount functions that produces 
a consistent notion of IRR. 

A collection ��� $ �}R,{: ODO  of discount functions is said to be a D-family if the 

following two conditions hold: (I) each $�OD  is positive; (II) for any W�d t0 , the function 

)()( tOO DWDO6  is strictly decreasing and onto ]1,0( . In what follows, the NPV functional 

associated with a discount function $�OD  is denoted by )($
OF . Set }R,{: )()(

�
$$ � OOF� . 

Condition (II) allows us to interpret parameter O  as the discount rate (or, more accurately, the 
degree of impatience). Indeed, in the most general sense, one can define the degree of impatience as 
a characteristic of time preference that, when increased, makes the earlier of any two timed 
outcomes more preferable. This is exactly what the strict decreasingness of )()( tOO DWDO6  

asserts: for any W�t  and ���R,ba , )1()1( )()(
WOO bFaF t

$$ t  �  )1()1( )()(
WOO bFaF t

$
c

$
c !  OO !c� . 

Provided that elements of $  are differentiable, condition (II) implies that for any t , the 
instantaneous discount rate, ))((ln c� tOD , is a nondecreasing function of O . The definition also 

implies that for any 0!t , the function )(tODO6  is a strictly decreasing homeomorphism of �R  

onto ]1,0( . Moreover, it can be shown that the function )(lim:)( t
t OO DDO

�fo
 �f6  is nonincreasing 

and continuous. In the special case when the function )(),( tt ODO 6  is continuously differentiable 
an analogue of a D-family governed by a real (rather than a nonnegative real) discount rate and its 
relation to the notion of IRR is studied in Vilensky and Smolyak (1999). 

The family }R,{ ��OD O , where D  is a strictly decreasing discount function, called a power 
family, serves as an example of a D-family. In particular, the exponential discounting family 

}R,{: �
� � ( OOtet6 , constant sensitivity discounting families }R),exp({ ��� OO Ett6 , 0!E  

(Ebert and Prelec, 2007) and generalized hyperbolic discounting families 
}R,)1({ �

� �� OE EOtt6 , 0!E  (Loewenstein and Prelec, 1992) are power and, hence, D-
families. We also note that the restriction of ≽2 to a D-family $  is total, so that the SPO induced by 

)($�  is 2Q -complete (Lemma 4). 
Given a D-family $ , it follows from a convergence theorem (Monteiro et al., 2018, Theorem 

6.8.6) that for any P�x  the function )(:)( )()( xFgx
$$  OO  is continuous on �R . If it has one change 

of sign, the internal rate of return is defined as follows. A project x  is said to possess the IRR w.r.t. 
$  if there exists a number �

$ �R)()( xIRR  such that ))(sgn()(sgn )()( OO � $$ xIRRgx  for all 

��RO . Put differently, x  possesses the IRR w.r.t. $  if )($
xg  has a unique root and moreover at 

this root the function changes sign from positive to negative. If ( $ , this definition reduces to the 
conventional definition of the IRR. Denote by PQ )( �$  the set of projects possessing the IRR w.r.t. 
$ . 
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Clearly, )(
2 QQ $�cc  for any D-family $ . The restriction of �

$$ oRQ: )()(IRR  to 2Qcc , 

denoted by )($RR , is called the rate of return w.r.t. $ . )($RR  sends each project 2Q11 cc��� Wbt  to 

the solution ��RO  of the equation )()( WDD OO bt  . For instance, if $  is a power family 

}R,{ ��OD O , then btbRR t ln))(ln)((ln)11( 1)( �$ � �� WDDW . 

Our next result shows that )($RR  and )($IRR  are profitability metrics. 

Proposition 3. 
Let $  be a D-family. The following statements hold. 

(a) )($RR  is a profitability metric. 
(b) An SPO is )($RR -consistent if and only if it is induced by },{ )( /�$ OOF , where /  is a dense 

subset of �R . 

(c) The least )($RR -consistent SPO is induced by )($� . 
(d) The natural domain of )($RR , denoted by )(D $ , consists of projects P�x  such that the 
function )($

xg  is either nonnegative, or negative, or there is ��RO  such that )($
xg  is nonnegative 

on ],0[ O  and negative on ),( f�O . 

(e) The natural extension of )($RR  is the total preorder over )(D $  with a utility representation 

RD: )()(
o$$

RR  given by }0)(:Rsup{:)( )()(
t� $

�

$
OO xgxRR  (with the convention 

�f �sup ). 

Moreover, statements (a)–(e) remain valid with )($RR  replaced by )($IRR . 
 
Proposition 3 demonstrates that the notion of the rate of return w.r.t. $  defined for 

investment operations with only two transactions 2Q cc  admits a unique extension (satisfying several 

reasonable conditions) to )(Q $ . This extension is exactly )($IRR . The literature knows several 

nonequivalent metrics that reduce to the logarithmic rate of return )((RR  (or an order-preserving 
transformation of this value) being restricted to 2Q cc : the conventional IRR, the metrics introduced in 
Arrow and Levhari (1969) and Bronshtein and Skotnikov (2007), to mention just a few. Proposition 
3 shows that the conventional IRR is the only metric among them that can serve for profitability 
measurement purposes. 

If the function )((
xg  has multiple roots, the literature suggests various modifications of IRR 

that reduce to the conventional IRR whenever )((
xg  has one change of sign. For instance, the 

minimal root is important as the asymptotic growth rate of a sequence of repeated projects (Cantor 
and Lippman, 1983). More involved selection procedures among the roots were proposed in 
Hartman and Schafrick (2004) and Weber (2014).5 Proposition 3 shows that these modifications are 
not profitability metrics. The largest extension of the domain of )((IRR  is described in part (d). 
Unfortunately, from an economic viewpoint )(D (  adds almost nothing to )(Q ( . Loosely speaking, 

)((IRR  (as well as )($IRR ) does not possess an extension to a larger set preserving completeness. 
The picture changes if we allow for an incomplete extension. Parts (b) and (c) describe all the 

extensions (not necessarily complete) of )($RR  and their common part. To illustrate their worth 
                                                 
5 We also refer to Hazen (2003) for an interesting result that the choice of a particular root is in some sense 
immaterial. 
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relative to the conventional IRR, consider the projects 210 11.1121 ���� x , 

210 17.0121 ����� y , 210 18.117.21 ����� z . They are incomparable in the sense of 

conventional IRR: the IRR equation for x  (i.e., 0)()(  ( Oxg ) has no roots, the IRR equation for z  
has two roots, 0.18 and 0.41, whereas y  possesses the IRR 0.44. However, zyx ;;  for every 

)((IRR -consistent SPO ; . As another illustration, one can easily construct projects P, �yx  such 

that x  and y  possess the IRR w.r.t. (  and )()( )()( yIRRxIRR (( ! , whereas yx �  does not possess 
the IRR w.r.t. ( . Thus, yx �  is incomparable with x  and y  in the sense of IRR. However, 

yyxx ;; �  for all )((IRR -consistent SPO ; . Note that the fact that the SPO with the 

representation )((�  can be considered as an extension of )((IRR  was observed in Bronshtein and 
Akhmetova (2004).6 

Some authors argue (Gronchi, 1986; Promislow, 2015, section 2.12) that the root uniqueness 
condition in the form we use in the definition of the IRR is not sufficient to be relevantly used for 
decision-making. However, Proposition 3 shows that the definition of )((IRR  we adopt is 
meaningful (at least for profitability measurement purposes) and, moreover, admits further 
generalization. On the other hand, in order to extend the class of projects possessing the IRR, some 
authors argue (e.g., see Vilensky and Smolyak, 1999) to take into account roots of )((

xg  only in a 

reasonable range ],0[ *O , where *O  is the greatest feasible interest rate. Clearly, this modification is 

a profitability metric, a corresponding consistent SPO is induced by ]},0[,{ *)( OOO �(F . 
In order to formulate our next result we introduce the following definition. Put 

}0,0,11{QR:S 2 batba t d��d�� cc �� WW ; to simplify the notation we write ),;,( Wtba  for 

S11 ��� Wba t . A function RS: oM  is said to be a rate of return if the following four conditions 
hold. 
1º. ),;,(),;,( WOOW tbaMtbaM   for any 0!O . 
2º. ),;,(),;,( GWW cbMtbaM   �  ),;,(),;,( GW tcaMtbaM  . 
3º. M  is strictly increasing in its second argument. 
4º. For any S�x  and W�d t0 , there are ba d�0  such that )(),;,( xMtbaM  W . 

The value ),;,( WtbaM  is interpreted as the yield rate (the rate of return) of the project 
S11 ��� Wba t . Condition 1º states that a rate of return takes no account of the investment size and 

hence is a relative measure. According to 2º, if rates of return over two subsequent periods are 
equal, the rate of return over the consolidated period will be the same. By 3º, a rate of return is an 
increasing function of the final outcome. Finally, according to condition 4º, delay can always be 
compensated by changing a money flow. An example of a rate of return is provided by the 
logarithmic rate of return, )ln()(),;,( 1 abttbaM �� WW . 

Though the notion of the IRR w.r.t. a D-family seems to be intuitive, it is introduced ad hoc, 
just by analogy with the conventional IRR. Our next result shows that it is actually a genuine 
extension of a rate of return, which in turn is proved to be a profitability metric. Namely, a function 

RS: oM  is a rate of return if and only if there are a D-family $  and a strictly increasing 

                                                 
6 Being applied to valuation of cash flow (or, more generally, utility) streams rather than profitability, 
multiple discount rates have gained increasing popularity in the recent literature (Chambers and Echenique, 
2018; Drugeon et al., 2019). 
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function M  such that )($ IRRM DM  on S  (or, equivalently, ),;,1(),;,( )( WMW tabRRtbaM $ D ). 
Moreover, and this is the main result of this section, the IRR w.r.t. a D-family is, up to an order-
preserving transformation, the only profitability metric whose restriction to 2Q cc  satisfies two natural 
conditions – continuity and monotonicity. 

Proposition 4. 
For an SPO ; , the following conditions are equivalent: 

(a) there exists a D-family $  such that ;  is )($RR -consistent (equivalently, )($IRR -consistent); 
(b) there exists a rate of return M  such that ;  is M -consistent; 
(c) the restriction of ;  to 2Q cc  is a lower semicontinuous (in the subspace topology) total preorder 
and WW 1111 ba tt ���� ; , whenever W�d t0  and 1t! ba . 

 
An interesting consequence of Proposition 4 is that a rate of return is nondecreasing in its 

third argument and nonincreasing in the fourth argument, that is, delay is undesirable. This follows 
from the definition of )($RR  and nonincreasingness of a discount function. Note that conditions 1º–
4º do not contain any explicit assumption on how a rate of return depends on time. 

We proceed by characterizing SPOs consistent with the conventional )((IRR . For any P�x  

and 0!W , put 
¯
®


t�
�

 �

WW
WW

ttx
t

tx
if)(
if0

:)()( . That is, )( W�x  is the project x  postponed until W . A 

binary relation ;  over a set PQ�  (with ~  being the symmetric part of ; ) is said to be stationary 

if )(~ W�xx , whenever 0!W  and Q, )( ��Wxx . The condition states that postponement of a project 

does not affect profitability. Note that if a project P�x  possesses the IRR w.r.t. ( , then so is )( W�x  
and )()( )()()( W�((  xIRRxIRR . Our next result characterizes )((IRR -consistent SPOs by means of 

stationarity and monotonicity conditions. In particular, it shows that )((IRR  is, up to an order-
preserving transformation, the only profitability metric whose restriction to 2Q cc  is stationarity and 
monotone. This characterization could be predicted in view of Proposition 4 and a well-known fact 
that multiplicative discounting reduces to exponential discounting under stationarity (Fishburn and 
Rubinstein, 1982, Theorem 2). 

Proposition 5. 
For an SPO ; , the following conditions are equivalent: 

(a) ;  is )((RR -consistent (equivalently, )((IRR -consistent); 
(b) the restriction of ;  to 2Q cc  is stationary and there exists 0!t  such that tt ba 1111 00 ���� ;  
for any 1t! ba . 

 
By Proposition 3 (part (b)), there is ℶ2 (the cardinality of the set of all dense subsets of �R ) 
)($IRR -consistent SPOs, each of which we consider as a possible extension of )($IRR . We proceed 

by showing that these extensions are essentially unique, namely, they coincide on a large class of 
projects, called regular. We introduce the following definition. Given &(.� � , a project P�x  
is said to be regular w.r.t. �  if ��D}{x  is a regular closed set (i.e., is equal to the closure of its 
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interior) in the subspace topology on � . Denote by )(�*  the set of all projects that are regular 
w.r.t. � . The following lemma motivates the definition. 

Lemma 9. 
Let ;  be an SPO with a representation � , � c  be a dense subset of � , and ';  be the SPO 

induced by � c . Then the restrictions of ;  and ';  to )(�*  coincide. 
 
To illustrate Lemma 9, assume that in the notation of the lemma �  is open in the subspace 

topology on }1)1(:P{ 0
*  � FF  and convex, then P)(  �* , so that ';;  . This can be 

established with the help of the fact that if a convex subset C  of a topological vector space has a 
nonempty interior, then ))C(int(cl)C(cl   (Aliprantis and Border, 2006, Lemma 5.28). We omit the 
details. 

Given a D-family $ , it can be shown that the map )($
OO F6  is a homeomorphism between 

�R  and )($�  endowed with the subspace topology (see Lemma 13 in the Appendix). Thus, Lemma 
9 implies that the structure of the dense subset /  of �R  in part (b) of Proposition 3 is immaterial, 

provided that we restrict ourselves to regular projects. So a project P�x  is regular w.r.t. )($�  iff 
}0)(:R{:)( )( t� $ $

� OO xgx  is regular closed in �R . To illustrate, consider a project P�x  such 

that the set of solutions }{O  of the IRR equation, 0)()(  $ Oxg , is finite. For instance, this condition 
holds if $  is a power family and x  is nonzero and contains finitely many transactions, i.e., lies in 
the linear span of }R,1{ ��WW  (Tossavainen, 2006). Since )($

xg  is continuous on �R , )(x$  is a 

union of finitely many closed intervals. Therefore, x  is regular w.r.t. )($�  if and only if )(x$  has 

no isolated points, that is, )($
xg  has no zero local maxima. In particular, if a project possesses a 

nonzero IRR w.r.t. $ , then it is regular. 
A simple sufficient condition of regularity w.r.t. )($�  is given in the following lemma. 

Lemma 10. 
Let $  be a D-family. Given a project P�x , assume that )($

xg  is differentiable on ��R . If (a) 

0)0( zx , 0)( z�fx , and (b) there is no ���RO  such that 0)()()( )()(  c $$ OO xx gg , then x  is 

regular w.r.t. )($� . 
 
It can be shown that if $  is a power family }R,{ ��OD O  generated by a differentiable 

discount function D  with 0)(lim  
�fo

t
t

D  (in particular, if ( $ ), then for any P�x , the function 
)($

xg  is differentiable on ��R  so that Lemma 10 is applicable in this case. To motivate the 

conditions of Lemma 10 note that if )(Q $�x  does not satisfy (a) or (b), then every neighborhood of 

x  contains a project that does not possess the IRR w.r.t. $ . Indeed, if 0)0()(lim )(   $

�fo
xg x O

O
 

(resp. 0)()0()(  �f $ xg x ), then )(
0 Q1 $�� Hx  (resp. )(

0 Q1 $�� Hx ) for any 0!H . Now assume 

that 0))(()( )()(  c $$ xIRRg x  and pick P�y  such that 0))(( )()(  $$ xIRRg y  and 

0))(()( )()( !c $$ xIRRg y . Then )(Q $�� yx H  for any 0!H  as 0))(( )()(  $$
� xIRRg yx H  and 
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0))(()( )()( !c $$
� xIRRg yx H . As a partial converse, we have that if the function )(),( )( OO $

zgz 6  defined 

on �uRP  is continuously Fréchet differentiable and a project x  satisfies conditions (a) and (b) of 

Lemma 10, then using the implicit function theorem one can show that )($IRR  is well defined in a 
neighborhood of x . 

Example 1 (cont.). 
As noted in Promislow (1997) the partition of P  into the set of usurious D}{U F  (where F  

is the NPV induced by the discount function tt �6.16 ) and nonusurious U\PN   loans suffers 
from the following drawback. If the threshold interest rate decreases (resp. increases), say from 
60% to 50% (resp. 70%), then one would expect the loans which were usurious (nonusurious) at the 
old rate should remain such. However, this is not the case of the proposed solution. The drawback 
can be overcome only at the price of incompleteness. We suggest to use the level sets of the least 

)((RR -consistent SPO to describe the sets of usurious and nonusurios loans. To be more precise, 
given the threshold logarithmic rate ��Rr , define the set of usurious rU  (resp. nonusurious rN ) 

loans as )11(U 10
re��;  (resp. )11(L 10

re��; ), where ;  is the least )((RR -consistent SPO. That is, 

]},0[0)(:P{:U )( rxFxr ��t� ( OO , rr rxFx U\)},(0)(:P{:N )( f����� ( OO . This definition 

generalizes the statement of the criminal code: indeed, if x  possesses the IRR w.r.t. ( , then rx N�  

(resp. rx U� ) if and only if rxIRR �( )()(  (resp. rxIRR t( )()( ). Moreover, whenever rr !c , we 
have rr UU �c  and rr c� NN  as desired. However, we lose completeness as PNU z� rr . 

 
 

4.2. PP and DPP 
In this section, we show that an order-reversing transformation of the payback period, as well 

as of its discounted counterpart, is a profitability metric. We find its natural domain, the natural 
extension and describe the corresponding consistent SPOs. 

For any P�x  and ��RW , denote by 
¯
®


!
d

 d WW
W

W tx
ttx

tx
if)(
if)(

:)(  the project truncated at W . 

Notice that P�dWx . Given ��D , set ³³ � �  
f

dd

W

WW
DD

W DD
00

)()( d)0()(d)0()(:)( xxxxxFxG . Note 

that &(.�)(DWG . Indeed, )(D
WG  is the NPV functional induced by the discount function 

¯
®


!
d
W
WD

t
tt

t
if0
if)(

6 . The function )()( xG D
WW 6  represents the cumulative discounted cash flow 

associated with x . If it has one change of sign over ��R , the discounted payback period is defined 
as follows. A project P�x  is said to possess the DPP w.r.t. D  if there exists a number 

���R)()( xDPP D  such that 0)()( �xG D
W  (resp. 0)()( txG D

W ) for any ))(,0( )( xDPP DW �  (resp. 

)),([ )( �f� xDPP DW ). For every P�x  the function )()( xG D
WW 6  belongs to P  (Monteiro et al., 

2018, Corollary 6.5.5). In particular, if x  possesses the DPP w.r.t. D , then 
0)(lim)()0( )(

0

)(
0 d  

�o
xGxGx D

WW

D  (i.e., 5Q cc�x ). The conventional notions of PP and DPP 

correspond to 01 D  and tet OD � )( , ���RO , respectively. Let PQ )( �D  be the set of projects 
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possessing the DPP w.r.t. D . Note that �z)(Q D  unless FD  . We also notice that )(
1 QQ D�c  if 

and only if 01 D , i.e., )(DDPP  is the conventional (undiscounted) PP. 
The reciprocals of PP and DPP are known to be crude estimates of the IRR (Gordon, 1955; 

Sarnat and Levy, 1969; Bhandari, 2009). Our next result shows that )(1:)( )()( xDPPxRDPP DD   is 
a profitability metric. 

Proposition 6. 
Let }{\ FD �� . The following statements hold. 

(a) ��oRQ: )()( DDRDPP  is a profitability metric. 

(b) An SPO is )(DRDPP -consistent if and only if it is induced by },{},{ )()( *��7� JW D
J

D
W HG , 

where 7  is a dense subset of }){suppint( D  and ])0(1,1[ ��* D . 

(c) The least )(DRDPP -consistent SPO is induced by 
]})0(1,1[,{})}{suppint(,{ )()( ���� DJDW D

J
D

W HG . 

(d) The natural domain of )(DRDPP  is )()()()( QQQ:D DDDD
�� �� , where )(Q D

�  is the set of 

projects P�x  such that 0)()( �xG D
W  for all ���RW  and )(Q D

�  is the set of projects P�x  such that 

0)()(
)0(1 t� xH D

D  and 0)()( txG D
W  for all ���RW . 

(e) The natural extension of )(DRDPP  is the total preorder over )(D D  with a utility representation 

RD: )()(
oDD

RDPP  given by 

°
¯

°
®



�f�
�
��t��

 

�

�

)(

)()(

)()(
1

)(

Qif
Qif)(
Qif1}0)(:]1),0([sup{

:)(
D

DD

DD
J

D
DJ

x
xxRDPP
xxH

xRDPP  (7) 

(with the convention �f �sup ). 
 

Note that if 1)0(  �D , then 
)(D

RDPP , defined in (7), reduces to 

°
°
¯

°
°
®



�f�
�

 �
��f�

 

�

�

�

)(

)()(

)()(

)()(

)(

Qif
Qif)(

0)(andQif0
0)(andQif

)(

D

DD

DD

DD

D

x
xxRDPP

xFx
xFx

xRDPP .  

In the case when the function )()( xG D
WW 6  has multiple changes of sign, some authors 

suggest to define the DPP as the minimum time t  (if any) such that 0)()( txG D
W  for all ttW  (e.g., 

see Hajdasiński, 1993). Though this definition seems to be intuitive from an economic viewpoint, 
Proposition 6 shows that an order-reversing transformation of the DPP defined this way is not a 
profitability metric and, therefore, contrary to the claim (Hajdasiński, 1993, p. 184), unable to serve 
for profitability measurement purposes. 

We proceed by considering a refinement of the adopted definition of DPP. An essential 
property of the payback period that motivates the definition is stability under truncation. An SPO is 
said to be stable under truncation if yx ;  �  WW dd yx ;  for any 0tW . The condition states that 
termination of projects (say, for external environmental reasons) do not result in a major 
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perturbation of the profitability ordering. Given ��D , denote by )(
,
D
OWG , 0!W , ]1,0[�O  the NPV 

functional induced by the discount function 

°
¯

°
®



!
 
�

W
WOD
WD

t
tt
tt

t
if0
if)(
if)(

6 .  

Note that )()()(
, lim)1( D

W

D
W

D
OW OO tt

GGG
�o

�� . The next result characterizes 1Qc -complete SPOs that are 

stable under truncation. 

Proposition 7. 
Let ;  be an SPO with a representation � . The following conditions are equivalent: 

(a) ;  is 1Qc -complete and stable under truncation; 
(b) there exists ��D  such that 

]}1,0[})0{\}{supp(),(,{},{})}{suppint(}0{,{ )(
,

)()()( u������ DODW D
O

DFD
W tGFFG t� . 

 
Proposition 7 suggests the following refinement of the conventional notion of DPP. A project 
P�x  is said to possess the refined DPP w.r.t. D  if 0)0( �x  and there exists a number 

���R)()( xDW  such that 0)()( 0, �xGt
D  and 0)()( �xGt

D  for all ))(,0( )( xt DW�  and 0)()( txGt
D  for all 

)),([ )( �f� xt DW . If x  possesses the refined DPP w.r.t. D , then denote by )()( xDO  the least solution 

]1,0[�O  of the equation 0)()(
),()(  xG x

D
OW D . Let ;  be the SPO induced by 

]}1,0[})0{\}{supp(),(,{},{ )(
,

)()( u�� DOD
O

DF tGFF t . Then, provided that projects x  and y  possess 

the refined DPP w.r.t. D , 
yx ;  �  ))(),(())(),(( )()(

lex
)()( xxyy DDDD OWOW t , (8) 

where lext  is the lexicographic order. Clearly, if x  possesses the refined DPP w.r.t. D , it also 

possesses the DPP w.r.t. D  and )()( )()( xxDPP DD W . If 0)0( �x  and the function x  is continuous, 
the converse is also true. 

Real-world investment projects are discrete, i.e., lie in the closure of the linear span of 
,...}1,0,1{  WW . It is a common practice to use linear interpolation of the cumulative discounted cash 

flow to evaluate DPP of a discrete project (e.g., see Götze et al., 2015, p. 72). For a discrete project 
x , the DPP obtained via interpolation is given by )(1)(:)( )()()( xxxDPP DDD OW ��  . Note that the 
restriction of the ordering (8) to the set of discrete projects possessing the DPP w.r.t. D  coincides 
with the ordering induced by )(1 D

DPP . This observation provides a formal justification for the 
linear interpolation practice. 

 
 

4.3. PI and other ratio type indices 
In this section, we show that the profitability index FPI  (as well as the ratio index F

GRI ) 
introduced in section 3 is a profitability metric. We find its natural domain and the natural 
extension, describe the corresponding consistent SPOs and provide their axiomatic characterization. 
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Let F  and G  ( Fz ) be NPV functionals. A project P�x  is said to possess the ratio index 
(RI) w.r.t. F  and G  if 0)( txF  and 0)( �xG ; in this case the index is defined as 

)()(1)( xGxFxRI FG � . F
GRI  comprises several popular profitability measures. For instance, the 

undiscounted profitability index (the return on investment), ))0(())0()(( xxxx ���f6 , 

considered in Example 3, corresponds to )1( 0FF   and )(FFG  . The conventional discounted 
profitability index FPI  corresponds to F

GRI  with )(FFG  . If 2Q�x , i.e., x  is a conventional 

investment in which a series of cash outflows is followed after some time ��RW  by a series of 

cash inflows, then )(xRI FG  is the discounted benefit-cost ratio provided that )(DFF   and 
)(D

WGG  . 

Denote by PQ �F
G  the set of projects possessing the RI w.r.t. F  and G . Note that �zF

GQ  

for any distinct &(.�GF, . The next result shows that ),1[Q: f�oF
G

F
GRI  is a profitability 

metric. 

Proposition 8. 
Given &(.�GF, , GF z , put })1(:R{:W~ &(.���� GwwFw , 

)(W~sup:~ GFGF �� , )(W~inf:~ GFGG �� .7 The following statements hold. 

(a) ),1[Q: f�oF
G

F
GRI  is a profitability metric. 

(b) An SPO is F
GRI -consistent if and only if it is induced by }W,)1({ ��� wGwwF , 

W~W)1,0( �� . 

(c) The least F
GRI -consistent SPO is induced by ]}1,0[,~)1(~{ ��� wGwFw . 

(d) The natural domain of F
GRI  is given by }0)(~,0)(~:P{\PD t�� xGxFxF

G . 

(e) The natural extension of F
GRI  is the total preorder on F

GD  with a utility representation 

�o RD: F
G

F
GRI  given by 

°
¯

°
®



ttf�
�t
��

 
0)(~and0)(~if
0)(~and0)(~if)(
0)(~and0)(~if0

:)(
~
~

xGxF
xGxFxRI
xGxF

xRI F
G

F
G .  

 
Let F  be an NPV functional induced by a discount function D  satisfying 1)0(  �D . It 

follows from Proposition 8 that the natural domain of ),1[}0)0(,0)(:P{: f�o�t� xxFxPIF  is 
}0)0(,0)(:P{\P t�� xxFx  and the natural extension is 

°
¯

°
®



ttf�
�t
��

 
0)0(and0)(if
0)0(and0)(if)(
0)0(and0)(if0

:)(
xxF
xxFxPI
xxF

xPI FF
.  

Unfortunately, from an economic viewpoint 
F

PI  adds almost nothing to FPI . Loosely speaking, 
FPI  does not possess an extension to a larger set. 

                                                 
7 Since the set &(.  is compact, it is routine to verify that W~  is bounded and &(.�GF ~,~ . 



 23 

In order to characterize FPI  we introduce the following definition. Given P�x  and 
]1,0[�J , denote by ))0()(()0(:)( xtxxtx �� JJ  the project whose future cash flow 01)0(xx �  is 

reduced by the scale factor J . Note that, by construction, )()( )()( xHxF D
JJ

D  , where the functional 
)(D

JH  is defined in section 3. An SPO is said to be stable under reduction if yx ;  �  JJ yx ;  for 

any )1,0(�J . The condition states that reduction of projects’ future cash flows do not result in a 
major perturbation of the profitability ordering. An SPO is said to be monotone if 00 111 ��� ;ta , 

0!t  �  tt ab 1111 00 ���� ;  for any ab ! . 

Proposition 9. 
For an SPO ; , the following conditions are equivalent: 

(a) either ;  is the NPV criterion induced by )(FF  or ;  is monotone and FPI -consistent for 

some }{\ )(FFF &(.� ; 
(b) ;  is 4Q -complete and monotone; 
(c) ;  is 1Qc -complete, stable under reduction, and monotone; 

(d) there are a discount function D  and a set ]1,0[)1,0( �*�  such that },{ )( *�JD
JH  represents 

; . 
 
Proposition 9 provides two characterizations of monotone FPI -consistent SPOs. First, it 

shows that an incomplete monotone SPO is FPI -consistent for some &(.�F  if and only if it is 

4Q -complete (a similar assertion is valid with regard to a F
GRI -consistent SPO and GQ -

completeness, where GQ  is defined in Lemma 7). Second, under monotonicity and 1Qc -

completeness, FPI -consistent SPOs are exactly those that are incomplete and stable under 
reduction of a future cash flow. As a corollary of Proposition 9, we get that an SPO ;  is S -
consistent, where S  is defined in Example 3, if and only if ;  is 4Q -complete and 

tt ab 1111 00 ���� ;  for any 0!t  and 1t! ab . 
 
 

4.4. Discussion 
An investor faces multiple sources of uncertainty: uncertain discount rate and uncertain 

project’s cash flows, to mention just a few. Investment in the real sector may also suffer from the 
risk of project truncation (for external environmental reasons), postponement, or uncertain intensity 
of the project implementation. The definition of an SPO ;  with a representation �  suggests that 
;  can be treated as a measure of project’s financial stability under a specific source of uncertainty 
determined by � . 

1. The structure of the set representing an NPV criterion – a singleton – suggests that the 
criterion should be used under complete certainty. 

2. The structure of the set representing an )($IRR -consistent SPO (Proposition 3) suggests 
that the IRR can be considered as a measure of project’s financial stability under uncertain discount 
rate. 
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3. The structure of a representation of a )(DRDPP -consistent SPO (Proposition 6) suggests 
that the DPP can be considered as a measure of project’s financial stability under truncation. Recall 
that the value )()( xG D

W  can be interpreted as the NPV of the truncated project Wdx . 

4. The structure of the set representing a F
GRI -consistent SPO, 

}W,~)1(~{ ��� wFwGw , ]1,0[W�  (Proposition 8), suggests that the ratio index F
GRI  can be 

considered as a measure of project’s financial stability under probabilistic uncertainty with respect 
to two scenarios. Namely, one can interpret F~  and G~  as the NPV functionals associated with the 
optimistic and pessimistic scenarios, respectively. Then GwFw ~)1(~ �� , ]1,0[�w  is the expected 
NPV provided that the probability of the optimistic scenario is w . 

The structure of a FPI -consistent SPO suggests that the profitability index can be thought a 
measure of project’s financial stability under uncertain future cash flow, 01)0(xx � , in the form of 
its proportional (to some scale factor ]1,0[�J ) reduction. This interpretation follows directly from 

the identity )()( )()(
J

DD
J xFxH  .8 Recall that )(D

JH , ]1,0[�J  is the NPV functional associated with 

the discount function FJJD )1( �� . Here ]1,0[�J  can be interpreted as the short term discount 
factor or present bias parameter (Laibson, 1997). Therefore, the profitability index is also a measure 
of project’s financial stability under uncertain short term discount factor. 

5. The following SPO may serve as a measure of financial stability under uncertain intensity 

of project implementation. For given ��D  and ���RO , set ³
f

� 
0

)( )(d)()0(:)( txtxxU ODD
O . )(D

OU  

is the value of a project implemented with the intensity O . Changing the variable in the integral, we 
get that )(D

OU  is the NPV functional associated with the discount function )( OD tt6 . Therefore, 

the SPO induced by }R,{ )(
���/�OD

OU  can be used if the investor faces uncertain intensity of the 

project implementation. Note that if tet 0)( OD � , ���R0O , then )()( },{ (�/� �OD
OU , so that the 

resulting profitability metric is consonant with the IRR. 
6. The following SPO may serve as a measure of financial stability under risk of 

postponement of the project implementation. For given ��D  and ��RW , denote by 

³
f

�� 
W

D
W WD )(d)()0(:)()( txtxxV  the value of the project x  whose implementation (with the 

exception of the initial transaction, )0(x ) is postponed until W . Changing the variable in the 

integral, we get that )(D
WV  is the NPV functional associated with the discount function 

¯
®


!�
 
0if)(
0if1

tt
t

t
WD

6 . Therefore, the SPO induced by }R,{ )(
��WD

WV  can be used if the investor 

faces the risk of project postponement. Note that if tet OD � )( , ���RO , then 

]}1,0(,{}R,{ )()( � � � JW D
J

D
W HV , so that the resulting profitability metric is the conventional PI. 

                                                 
8 The identity � �)1)0((1)0()1()()1( 00

)()( xxxFxH �� JJ DD
J , ]1,0(�J  demonstrates that the profitability 

index can equivalently be interpreted as a measure of project’s financial stability under uncertain initial 
outflow )0(x . 
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The literature seems to be controversial with respect to conditions under which the use of one 
profitability metric is superior to other. The interpretation above suggests that the choice of a 
particular metric should be determined by the source of uncertainty the investor faces. Some authors 
argue to use multiple criteria (say, the combination of IRR and DPP) to choose between projects. In 
view of property 6º of Lemma 1, such a multiple criterion can be constructed by uniting the sets of 
NPV functionals representing the partial criteria. 

 
 

5. Conclusion 
This paper provides an axiomatic characterization of a project’s profitability ranking. We 

adopt axioms similar to those used in Promislow (1997) and Vilensky and Smolyak (1999), but in 
contrast to the latter paper, allow for incomparable projects. This results in a class of orderings that 
includes the ones induced by conventional capital budgeting metrics, in particular, by the NPV 
criterion, IRR, PI, PP, and DPP. 

The project space P  we deal with covers investment projects with bounded deterministic cash 
flows. Theoretical financial models operate unbounded and/or stochastic cash flows, so that other 
types of project spaces are of interest. Note that all the obtained results that do not explicitly rely on 
the structure of an NPV functional (namely, Propositions 1, 2, 8 and Lemmas 1, 2, 7, 8, 9, 12) 
remain valid for an ordered Hausdorff locally convex topological vector space with an order unit. 
That is, if P  is a real Hausdorff locally convex topological vector space, PP ��  is a pointed closed 

convex cone with a nonempty interior ���  PintP , and }1)(:P{  � � eFF D&(. , where ���Pe  
is a distinguished element called an order unit. Notice that the existence of an order unit implies that 
the cone of nonnegative projects �P  is generating, i.e., every P�x  can be represented in the form 

�� � xxx , ��� �P, xx . Such a representation is vital for x  to be interpreted as a cash flow as, by 
definition, cash flow is the net of cash inflows and outflows. 

We close with a discussion of two open problems. 
1. The paper mainly exploits SPO (rather than PO) due to its simple representation and nice 
interpretation. Therefore, it would be desirable to provide its separate axiomatic characterization. 
2. A slightly more intuitive relation than SPO can be introduced as follows. Given a nonempty 
set &(.� � , define the preorder ≿ over P  by 

x≿ y  �  )(sgn)(sgn yFxF t  for all ��F .  
The relation ≿ seems to be a little bit more relevant for profitability measurement purposes than the 
SPO ;  induced by � . First, x  ≻ 0  ≻ x�  (where ≻ is the asymmetric part of ≿) for every 

���Px , whereas for ;  we have a counterintuitive x;0  for all P�x . Second, in contrast to ; , ≿ 
satisfies the skew symmetry condition, x≿ y  �  y� ≿ x� . Various types of projects imply the 
existence of two sides, whose cash flows differ by sign (e.g., the borrower and lender sides of a 
loan). The skew symmetry condition asserts that the two sides rank projects’ profitabilities in the 
reversed order. Though the preorders ≿ and ;  are “essentially the same” from a practical viewpoint 
(the closure of an upper contour set of ≿ coincides with the corresponding upper contour set of ; ), 
it would be desirable to present an axiomatic foundation for ≿ and exploit it to study completeness 
on a predetermined subset of projects and profitability metrics in the manner of sections 3 and 4. 

 
 



 26 

6. Appendix. Auxiliary results and proofs 

Lemma 11. 
RP: oF  is a net present value functional if and only if representation (1) holds for some 

��D . 

Proof. 
Let &(.�F . A routine argument shows that every additive and positive functional is 

homogeneous and continuous. Therefore, there exists a function of bounded variation RR: o�D  

such that ³
f

� 
0

d)0()0()( xxxF DD  (Monteiro et al., 2018, Theorem 8.2.8). The function D  is 

nonnegative: indeed, for any ��Rt , we have ��P1t  and, therefore, 0)1()( t tFtD . D  is 

nonincreasing: for any W�t , we have 0)11()1()1()()( t� � � WWWDD tt FFFt  as ��� P11 Wt . 

Clearly, 1)1()0( 0   FD , so that ��D . 

Now assume that Eq. (1) holds for some ��D . Clearly, *P�F  and 1)1( 0  F , so that we 

only have to prove that F  is positive. Pick ��Px  and note that for any 0!H , there is a step-

function P1
1

� ¦
 

n

k
tk k

cy , R,...,1 �ncc , ntt ��d ...0 1  such that H�� yx  (Monteiro et al., 2018, 

p. 82). The constants ncc ,...,1  can be chosen such that ��Py , i.e., 0...1 t�� kcc , nk ,...,1 : 

indeed, the step-function }0),(max{:)( tyty  �  satisfies �� �Py  and H�� �yx . As ��D , we 

have 

0)...))(()(()...)(()()(
1

1
111

1

t������  ¦¦
�

 
�

 

n

k
kkknn

n

k
kk ccttccttcyF DDDD .  

Since F  is continuous, this proves that 0)( txF . ▀ 
 

Proof of Lemma 1. 
1º. (NT), (I), and (USC) imply xx ;O , 0!O . This holds for all P�x  and 0!O  if and only 

if xx ~O . 
2º. Assume by way of contradiction that ;  is lower semicontinuous. By property 1º, xx O~  

for any P�x  and 0!O . Tending 0oO  and using upper and lower semicontinuity, we obtain 
0~x , which contradicts nontriviality of ; . 

3º. By property 1º, 00 1~12 � , whereas 00 112 !� . 

4º. Since 01  is an order unit and ;  is nontrivial, property 1º and (M) imply 00 112 �� ; . Now 

assume by way of contradiction that ;  satisfies yx ;  �  yxx �; . Applying this implication to 
the inequality 00 112 �� ; , we arrive to a contradiction: 0000 111212  ��� ; . The remaining 
statement can be established in a similar fashion. 

5º. Assume by way of contradiction that there is P�x  such that x;01  and x�;01 , 

whereas xx �; . As )(L x;  is closed under addition and )(L, xxx ;�� , we arrive to a 

contradiction: 01~0 � xxx ; . 
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6º. Straightforward. ▀ 
 

Proof of Proposition 1. 
To show independence of (NT), (M), (USC), (I) we provide four examples of binary relations 

on P  that satisfy three of the conditions while violating the fourth. Pick &(.�F  and 
D
�� P\P*G . The binary relation ;  defined by yx ;  �  1)}(),(max{

}{}{
 yIxI FF DD  satisfies all the 

conditions except (NT). The binary relation given by yx ;  �  )()(
}{}{
yIxI GG DD t  meets all the 

conditions except (M). The binary relation defined by yx ;  �  )()(
}{}{

xIyI FF �t� DD  satisfies all 

the conditions except (USC). Finally, the binary relation given by yx ;  �  )()( yFxF t  meets 
all the conditions except (I). 

(a)�(b). Let ;  be a PO. From (USC), (I), and property 1º in Lemma 1 it follows that for any 

P�z , )(U z;  is a closed convex cone. Set }P,))(U{( �� zz &(.- D
; . By (M), 

)))(U(( &(.�D; z  is a base for the cone D
; ))(U(( z . Thus, 

)(U))(U()))(U(( zzz ;
DD

;
DD

;   �&(. , where the second equality follows from the bipolar 

theorem (Aliprantis and Border, 2006, Theorem 5.103). By (NT), yx ;  �  

)}(U:P{)}(U:P{ zyzzxz ;; �����  �  }K:K{}K:K{ DD ����� yx --  �  

)()(
KK

yIxI DD t  for all -�K . From (I) it follows that the set 

�
D

D
; ;

K:K

)K\P(}:P{)(L
��

 � 
z

xzxz
-

 is closed under addition. 

(b)�(a). It is straightforward to verify that the binary relation ;  defined in part (b) is a PO. 
In order to show that elements of the family -  in part (b) can be chosen closed and convex, 

note that ;  depends on -�K  only through DK . For each -�K , set &(.� DDK:K . We have 
DDDDDDDD K)K()K(K    , where the first equality follows from the fact that K  is a base for the 

cone DDK  and the last equality comes from the bipolar theorem. Thus, replacing each -�K  with 
K  in the representation produces the same PO. K  is closed and convex as the intersection of the 
closed and convex sets DDK , D

�P , and }1)1(:P{ 0
*  � FF . ▀ 

 

Proof of Proposition 2. 
(a)�(b), (a)�(c), (a)�(d). Straightforward. 
(b)�(a). Set }1~:P{:U 0zz� . Property 1º, (M), and (NT) imply that )1(UU 0; , so that, 

by (I) and (USC), U  is a closed convex cone. Denote U\P:L  . Since ;  is nontrivial, �zL . 
Pick L, �yx . As ;  is total, without loss of generality we may assume that yx ; . Combining this 
with xx ;  and using (I), we get yxx �; , and, therefore, L�� yx . This proves that L  is an 
open convex cone. By a separating hyperplane theorem (Aliprantis and Border, 2006, Lemma 5.66, 
Theorem 5.67), there is a nonzero *P�F  such that )(0)( yFxF d�  for all L�x  and U�y . 
Condition (M) implies UP �� , so that F  can be chosen such that &(.�F . Since ULP � , 

we have D}{U F . For each L�z , )(U z;  is a closed convex cone containing U  as a proper 



 28 

subset. As U  is a closed half-space, P)(U  z; . Thus, L  is an equivalence class w.r.t. ~ , so that 

yx ;  �  )()(
}{}{
yIxI FF DD t . 

(c)�(a). Reproducing the beginning of the proof “(b)�(a)”, we get that 
)1(U}1~:P{:U 00 ; � zz  is a closed convex cone and �z U\P:L . Condition (c) implies 

that L  is an open convex cone. The rest of the proof reproduces the corresponding part of that of 
“(b)�(a)”. 

(d)�(a). Set }1~:P{:L 0�� zz  and )1(U:U 0� ; . From property 1º, (M), and (NT) it 

follows that L\PU  . Nontriviality of ; , property 1º, and axiom (I) (resp. condition (d)) imply 
that L  (resp. U ) is a nonempty convex cone. By a separating hyperplane theorem, there is a 
nonzero *P�F  such that )(0)( yFxF dd  for all L�x  and U�y . As UP �� , F  can be chosen 
such that &(.�F . Set }0)(:P{:H !� � xFx  and }0)(:P{:H �� � xFx  and note that 

UH ��  and LH �� . For each ��Hx , )(L x;  is a convex cone containing }{L x� , i.e., 

)(LLR xx ;��� . As PHRLR  ��� ��� xx , we get P)(L  x; . This proves that )1(UH 0;�� . 

We have D
;

D }{U)1(U)H(cl}{ 0 FF ��� � , where the first inclusion follows from the fact that 

)1(U 0;  is closed. Thus, D
; }{)1(UU 0 F  . As }1~:P{)1(U 00 zz� ; , i.e., U  is an equivalence 

class w.r.t. ~ , we are done. ▀ 
 

Lemma 12. 
Given a nonempty set &(.+ � , let �  be the closed (in the weak* topology) convex hull of 

+  and ;  be the SPO induced by � . The following conditions are equivalent: 
(a) yx ; ; 
(b) 0)(infsup

R
t�

�� �

yxF
F

O
O +

; 

(c) ))R((cl yx ��� D+ . 

In particular, if the set )R( y��D+  is closed (which holds, e.g., if +  is finite9), then (a)–(c) 
are also equivalent to 
(d) there exists ��RO  such that 0)( t� yxF O  for all +�F . 

Proof. 
Note that condition (b) is equivalent to the following one which we refer to as (b)': for any 
0!H , there exists ��RO  such that 0)( t�� HOyxF  for all +�F . Condition (c) is equivalent to 

the following one which we refer to as (c)': for any neighborhood of zero O  in P , there exists 
Oz u� �R),(O  such that 0)( t�� yzxF O  for all +�F . 

(b)'�(c)'. Pick an open neighborhood of zero O  in P . Since O  is absorbing, O�01H  for 

some 0!H . By (b)', there exists ��RO  such that 0)( t�� HOyxF  for all +�F . Thus, (c)' holds 
with that O  and 01H z . 

                                                 
9 If +  finite, then for any P�y , the cone )R( y��D+  is polyhedral (Luan and Yen, 2020, Theorem 2.11) 
and, therefore, closed. 
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(c)'�(b)'. Pick 0!H  and put ��� P1: 0HHO . As HO  is an open neighborhood of zero, 

condition (c)' implies that there exists HO Oz u� �R),(  such that 0)( t�� yzxF O  for all +�F . 

Note that ���Ps  if and only if 0)( !sF  for all &(.�F  (Aliprantis and Tourky, 2007, Lemma 
2.17). As ���� P10 zH , we have )()1( 0 zFF ! HH  for all &(.�F . Thus, 

0)()( t��!�� yzxFyxF OHO  for all +�F . 
(a)� (c). Since ���P10 , the set &(.  is compact (Jameson, 1970, Theorem 3.8.6) and, 

therefore, so is � . �  constitutes a compact base for the cone ��R  generated by � , so that 
��R  is closed (Jameson, 1970, Theorem 3.8.3). Thus, ��R  is the closed convex conical hull of 

+  (i.e., the smallest closed convex cone containing + ) and �+ � RDD  by the bipolar theorem. We 
have 

))R((cl))R(())R(())R()R(()}{()(U yyyyyy ����� � � � � � DDDDDDDDDDDD
; +++�� , 

where the first equality comes from the definition of the SPO induced by � , whereas the remaining 
equalities follow from the properties of the duality operation (e.g., see Messerschmidt, 2015, 
Lemma 2.1) and the fact that the initial and the weak topologies on P  have the same collection of 
closed convex sets (Aliprantis and Border, 2006, Theorem 5.98). 

(c)� (d). Trivial. ▀ 
 

Proof of Lemma 2. 
Assume that ;  is Q -complete. To show that ⊒ is total, pick -�L,K  and assume by way of 

contradiction that neither K⊒L  nor L⊒K , i.e., there are Q, �yx  such that DL�x , DK�x , 
DK�y , and DL�y . This implies that x  and y  are incomparable w.r.t. ; , which is a contradiction. 

The same argument works in the other direction. ▀ 
 

Proof of Lemma 3. 
(a)�(b). Trivial. 
(b)�(c). Let ≽ be the preorder over �  induced by 1Qc . By condition (b) and Lemma 2, ≽ is 

total, so that it is sufficient to verify that for any ��GF, , F ≽G  �  F ≽1G . Pick ��GF,  
and denote by D  and E  the discount functions associated with F  and G . Without loss of 
generality, we may assume that F ≽G . If FE  , then trivially ED t . Otherwise, pick 

}0{\}{supp E�t  and set ttx 1))(1(10 E�� . Then 1Qc�x  and 0)(  xG , so that by the definition 

of ≽ we have )())(1(1)(0 ttxF DE�� d  as desired. 
(c)�(a). Let ≽ be the preorder over �  induced by 1Q . In view of Lemma 2, it is sufficient 

to show that for any ��GF, , F ≽1G  �  F ≽G . Pick ��GF,  and denote by D  and E  the 
discount functions associated with F  and G . Assume that F ≽1G  and pick 1Q�x  such that 

0)( txG . We have to show that 0)( txF . Since x  is nondecreasing and ED t , we have 

0)(d)0(d)0()(
00

t �t� ³³
ff

xGxxxxxF ED . ▀ 
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Proof of Lemma 4. 
(a)�(b). Trivial. 
(b)�(c). Let ≽ be the preorder over �  induced by 2Qc . By condition (b) and Lemma 2, ≽ is 

total, so that it is sufficient to verify that for any ��GF, , F ≽G  �  F ≽2G . Pick ��GF,  
and denote by D  and E  the discount functions associated with F  and G . 

First, we show that }{supp}{supp ED  . Pick 0!W  and assume by way of contradiction that 
0)(  WD , while 0)( !WE . Put WWE 1))(1(10 �� x  and tcy 11 �� W , where t�W  and 

))()(,0( tc EWE�  (with the convention �f 0)(WE ). Then 2Q, c�yx , 0)( �xF , 0)(  yF , while 
0)(  xG , 0)( �yG , so that x  and y  are incomparable, which is a contradiction. This proves that 

}{supp}{supp DE � . The reverse inclusion can be shown by a similar argument. 
If }0{}{supp  E , then �  is a singleton and (c) trivially holds. Thus, it remains to consider 

the case }0{}{supp zE . Without loss of generality, we may assume that F ≽G . Pick 
}{supp0 EW ��d t  and set WWEE 1))()((1 tx t �� . Then 2Qc�x  and 0)(  xG , so that by the 

definition of ≽ we have )())()(()()(0 WDWEED ttxF �� d  as desired. 
(c)�(a). Let ≽ be the preorder over �  induced by 2Q . In view of Lemma 2, it is sufficient 

to verify that for any ��GF, , F ≽2G  �  F ≽G . Pick ��GF,  and let D  and E  be the 
discount functions associated with F  and G . Assume that F ≽2G  and pick 2Q�x  such that 

0)( txG . We have to show that 0)( txF . If 1Q�x , the result follows from the fact that ≽2�≽1 
and Lemma 3. Now assume that 12 Q\Q�x , i.e., 0)0( dx  and there is ���RW  such that x  is 
nonincreasing (resp. nondecreasing) on ),0[ W  (resp. ),[ f�W ). If }{supp EW � , the inequality 

0)( txG  implies that the restriction of x  to }{supp E  is identically 0  and, as }{supp}{supp ED  , 
we have 0)()(   xGxF . Now assume that }{supp EW �  and set )()(:)( �� ' WWW xxx , 

WW 1)(:~ xxx '� . We have 
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Here the first inequality stems from the facts that )()( ttt ED6  is nondecreasing on }{supp E  (as 
F ≽2G ), x~  is nonincreasing on ],0[ W  and nondecreasing on ),[ f�W . The second inequality 
follows from 0)0()( t� xxG  (as 0)( txG  and 0)0( dx ). 

(b)�(d). Trivial. 
(d)�(c). The proof of “(b)�(c)” remains valid with 2Qc  replaced by 2Q cc , provided that each 

NPV functional from �  has positive discount function. ▀ 
 

Proof of Lemma 5. 
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(a)�(b). Let ≽ be the preorder over �  induced by 3Q . By condition (a) and Lemma 2, ≽ is 
total, so that it is sufficient to verify that for any ��GF, , F ≽G  �  F ≽2G  & F ≽3G . Pick 

��GF,  and let D  and E  be the discount functions associated with F  and G . Without loss of 
generality, we may assume that F ≽G . Since 32 QQ �cc , from Lemma 4 we conclude that F ≽2G . 

Pick 43210 tttt ���d  and set )11(11
4321 tttt ax ���� , where 0

)()(
)()(

43

21 !
�
�

 
tt
tta

EE
EE . Then 

3Q�x  and 0)(  xG , so that by the definition of ≽ we must have 0)( txF . The last inequality 

implies 
)()(
)()(

)()(
)()(

43

43

21

21

tt
tt

tt
tt

EE
DD

EE
DD

�
�

d
�
�

. Since 0�cD , 0�cE , we deduce that the function ED cc  is 

nondecreasing, i.e., F ≽3G . 
(b)�(a). Let ≽ be the preorder over �  induced by 3Q . In view of Lemma 2, it is sufficient 

to verify that for any ��GF, , F ≽2G  & F ≽3G  �  F ≽G . Pick ��GF,  and let D  and E  
be the discount functions associated with F  and G . 

Assume that F ≽2G  and F ≽3G  and pick 3Q�x  such that 0)( txG . Let ���RW  be such 
that x  is nonpositive on ),0[ W  and nonnegative on ),[ f�W . We have to show that 0)( txF . Set 

¯
®
  

 
otherwise)(
if0

:)(~
tx

t
tx

W
. Using integration by parts and the substitution theorem (Monteiro et al., 

2018, Theorem 6.4.2, Corollary 6.6.2), we have 
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Here the first inequality follows from )())()(()( �ft�f EWEWDD  (as F ≽2G ). The second one 
stems from the following facts: 0�cD  and 0�cE  (by assumption), )()()()( WEWDWEWD cct  (as 
F ≽2G ), 0)(~ t�fx  (as 3Q�x ), ED cc  is nondecreasing (as F ≽3G ), x~  is nonpositive on ],0[ W  

and nonnegative on ),[ f�W  (as 3Q�x ). ▀ 
 

Proof of Lemma 6. 
(a)�(b). Trivial. 
(b)�(c). Let ;  be 4Qc -complete. Set )1(sup:)( t

F
Ft

��
 D . Clearly, ��D . Pick ��GF,  and 

denote by E  and G  the discount functions associated with F  and G . Let ≽ be the preorder over 
�  induced by 4Qc . By Lemma 2, ≽ is total. Without loss of generality, we may assume that 
F ≽G . As 41 QQ c�c , ;  is 1Qc -complete, and, therefore, GE t  pointwise (Lemma 3). Pick 

W�� t0  and set W1110 bax t ��� . By the definition of ≽ we must have 0)( txF  for every a  
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and b  satisfying 0)(  xG . This condition implies 0
)()(
)()(

det  ¸̧
¹

·
¨̈
©

§
WGG
WEE

t
t

. Therefore, there is a 

constant ]1,0[�J  such that FJJEG )1( �� . If ;  is 5Qc -complete, then, as 52 QQ c�c , 

}{supp}{supp GE   (Lemma 4), so that ]1,0(�J . Therefore, },{ )( *� JD
JH�  for some ]1,0[�*  

(resp. ]1,0(�* ), whenever ;  is 4Qc -complete (resp. 5Qc -complete). 

(c)�(a). We shall prove only 5Q -completeness, 4Q -completeness can be established in a 

similar way. Let ≽ be the preorder over �  induced by 5Q . It is sufficient to prove that for any 

*�VJ , , VJ t  �  )(D
JH ≽ )(D

VH ; this implies that ≽ is total and, therefore, ;  is 5Q -complete. 

Assume that VJ t  and there is 5Q�x  such that 0))0()(()0()( )()( t�� xxFxxH DD
V V . Since 

0)0( dx  (as 5Q�x ) and 0!V  (as ]1,0(�* ), this implies 0)0()()( t� xxF D . Thus, 

0)())0()(()0())0()(()0()( )()()()( t ��t�� xHxxFxxxFxxH D
V

DDD
J VJ . ▀ 

 

Proof of Lemma 7. 
Let ;  be GQ -complete. Assume that there are ��21,FF  such that each of which is linearly 

independent with G  (otherwise, the statement holds trivially). Let ≽ be the total preorder over �  
induced by GQ . Without loss of generality, we may assume that 2F ≽ 1F . 

Pick P�x  such that 0)()( 1   xFxG . As 1F  is linearly independent with G , there is 

Gy Q* �  such that 0)( *
1 tyF . For any 0!O , we have 0)( * �r xyG O , 0)( *

1 tr xyF O , and, 

therefore, 0)( *
2 tr xyF O . Since the last inequality holds for all 0!O , we conclude that 

0)(2  xF . Thus, the intersection of the kernels of G  and 1F  lies in the kernel of 2F , so that 

12 bFaGF �  for some scalars a  and b  (Aliprantis and Border, 2006, Lemma 5.91). 
Now assume that &(.�G . As &(.�21,FF , we have 1 � ba . Setting GFH � 1: , we 

get bHGF � 2 . As Gy Q* �  and 0)( *
1 tyF , in order to satisfy 2F ≽ 1F , we must have 

0)( *
2 tyF . This implies 0!b , so that },{ %�� bbHG�  for some ��% R . Recall that 

0)( !zV  for all nonzero D
��PV  and ���Pz  (Aliprantis and Tourky, 2007, Lemma 2.17). As 

0)1( 0  H , we get D
��PH  and, therefore, there is ��Px  such that 0)( �xH . This shows that %  is 

bounded. Set HGF )(sup: %� . Since the set &(.  is closed, &(.�F  and the result follows. 
Now assume that &(.�G  and ;  is GQc -complete. Since ;  is also GQc -complete, we have 

to show that ��G  provided that �  is not a singleton. Assume by way of contradiction that 
��G  and there is ��G~  such that GG z

~ . Pick P�x  (resp. P�y ) such that 0)( �xG , 

0)(~ txG  (resp. 0)(  yG , 0)(~ �yG ), then it is not true that G ≽G~  (resp. G~ ≽G ), a contradiction 
with totality of ≽. 

To prove the converse assume that }W,)1({ ��� wGwwF� , &(.�F , ]1,0[W�  
(resp. ]1,0(W� ) represents ; . A minor modification of the proof “(c)�(a)” in Lemma 6 shows 
that for any W, 21 �ww , 21 ww t  �  GwFw )1( 11 �� ≽ GwFw )1( 22 �� , where ≽ is the preorder 
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over �  induced by GQ  (resp. GQc ). This proves that ≽ is total and, therefore, ;  is GQ -complete 

(resp. GQc -complete). ▀ 
 

Proof of Lemma 8. 
Denote by ;  the SPO with a representation � . 
(a). Let ';  be an M -consistent SPO and let � c  be a representation of '; . By construction, 

for any Q, �yx , )()( yMxM t  �  yx ; . On the other hand, �� �c , so that yx ;  �  y'x ;  
�  )()( yMxM t . Thus, ;  is the least M -consistent SPO. 

(b). As ;  is M -consistent and, hence, Q -complete, ≽ is total. Let ≽1 be the preorder over 
�  induced by D . By construction, ≽�≽1. On the other hand, as DQ� , we have ≽1�≽. Thus, 
≽1=≽ and ≽1 is total. This proves that ≽1 is D -complete. 

We have only to show that if C  is a proper superset of D , then ;  is not C -complete. As C  
is a proper superset of D , there are ��GF,  and D\C�x  such that F ≽G , 0)( �xF , and 

0)( txG . The last two inequalities show that it is not true that F ≽2G . As ≽ is antisymmetric, we 
also have F ≻G . On the other hand, as CQ� , we get ≽2�≽. Since F ≻G  (as ≽ is 
antisymmetric), this proves that it is not true that G ≽2F . This shows that F  and G  are 
incomparable with respect to ≽2 and, therefore, ;  is not C -complete. ▀ 

 

Proof of Proposition 3. 
(b). Let ;  be an SPO with a representation � . 

Assume that ;  is )($RR -consistent. Pick ��F  and denote by D  the discount function 
associated with F . Pick W�� t0  and set ttx 1))(1(1: 0 OO D��  and WOOO WDD 1))()((1: ty t �� , 

��RO . Then 2Q, cc�OO yx  and )()( )()(
OO O yRRxRR $$   . Since ;  is )($RR -consistent, we must 

have )()(
}{}{ OO yIxI FF DD  . The last equality holds for any ��RO  if and only if there is ��R*O  

such that )()( * tt
O

DD   and )()( * WDWD
O

 . Therefore, },{ )( /� $ OOF� , ��/ R . /  is dense in 

�R  (if /� \R  contained a proper interval, than it would contradict )($RR -consistency). 

To prove the converse assume that },{ )( /� $ OOF� , where /  is dense in �R . Clearly, if 

2Q cc�x , then })](,0[,{}0)(:{ )()( /�� t� $$ xRRFxFF OO� . Therefore, if 2Q, cc�yx , then 

yx ;  �  )()( )()( yRRxRR $$ t . 
(a), (c). These follow from part (b). 
(d). The total preorder ≽ over )($�  induced by 2Q cc  is given by )($

OF ≽ )($
cOF  �  OO cd . 

Clearly, ≽ is antisymmetric, so that we can use representation (5) for the natural domain. From (5) 
it follows that )(D $�x  if and only if for any OO cdd0 , 0)()( tc$ Oxg  �  0)()( t$ Oxg . That is, the 

natural domain of )($RR  consists of projects P�x  such that )($
xg  is either nonnegative, or 

negative, or there is ��RO  such that )($
xg  is nonnegative on ],0[ O  and negative on ),( f�O . 
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(e). Let ;  be the SPO induced by )($� . It is straightforward to verify that 
)($

RR  is a utility 

representation for the restriction of ;  to )(D $ . 

Clearly, )($IRR  is the restriction of 
)($

RR  to )(Q $ , so that statements (a)–(e) remain valid 

with )($RR  replaced by )($IRR . ▀ 
 

Proof of Proposition 4. 
(a)�(b). Given a D-family $ , it is straightforward to verify that the function RS: oM  

defined by ),;,1(:),;,( )( WW tabRRtbaM $  is a rate of return. 

(b)�(a). Define the function RR: o�M  by )1,0;,1(:)( zeMz  M  and set MM D1:~ � M . 

From conditions 1º, 3º, and 4º it follows that M~  is well defined and maps S  onto �R . The function 
1�M  is strictly increasing, so that an SPO is M -consistent if and only if it is M~ -consistent. Let us 

show that there is a D-family $  such that ),;,1(),;,(~ )( WW tabRRtbaM $ . 

Let ),1[}:R),{(R: 2 f�o��u �� WW ttJ  be the inverse of ),;,1(~),;( WW tbMtb 6  with 

respect to the first argument, that is, OW  ),;,1(~ tbM  �  btJ  ),;( WO . By conditions 1º, 3º, and 4º, 
J  is well defined and for any W�d t0 , ),;( WtJ �  is strictly increasing and onto ),1[ f� . 

Condition 2º implies 
),;(),;(),;( GOGWOWO tJJtJ  . (9) 

Extend the domain of J  to 3R �  by setting 1:),;(  ttJ O  and ),;(1:),;( WOWO tJtJ   for W�d t0 . 

Then the Sincov functional equation (9) holds for all 4R),,,( ��GWO t . Its general solution is 

),(),(),;( WOOWO ftftJ   for some function ��� o RR: 2f  (Aczél, 1966, p. 223). As 1),;( tWO tJ  
for all W�d t0 , f  is nonincreasing in the second argument. Setting )0,(),(:)( OODO ftft  , 

��RO , we have 1)0(  OD . Moreover, the function ),;()()( WOWDDO OO tJt  6  is strictly 

increasing and onto ),1[ f� . Therefore, OD  is a discount function and }R,{: �� $ ODO  is a D-

family. Comparing definitions of J  and )($RR , we conclude that ),;,1(),;,(~ )( WW tabRRtbaM $ . 
(a)�(c). Straightforward. 
(c)�(a). Let �  be a representation of ; . By Proposition 3 (part (b)), it is sufficient to show 

that there is a D-family $  such that },{ )( /� $ OOF� , where /  is a dense subset of �R . 
First, we show that each NPV functional from �  has positive discount function. Assume by 

way of contradiction that there is ��F  satisfying 0)1(  tF  for some 0!t . By assumption, 

WW 1111 ���� tt a ;  for any t!W  and 1!a . This implies that there is a functional ��G  

satisfying )1()1( WGG t ! . Set W11 �� tx  and tby 110 �� , 1tb . Then 2Q, cc�yx , 0)(  xF , 
0)( �xG , whereas 0)( �yF , 0)( tyG  for sufficiently large b , so that projects x  and y  are 

incomparable, which is a contradiction. 
Let D  and E  be the discount functions associated with some distinct ��GF, . Set 

)()(:)( ttt EDJ  . As ;  is 2Q cc -complete, by Lemma 4, J  is monotone. Without loss of generality, 
we may assume that J  is nondecreasing. Let us show that it is actually strictly increasing. By 
contradiction, assume that there are 21 tt �  such that )()( 21 tt JJ  . Since ED z , there is W  such 
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that 1)( !WJ . Set WWD 1))(1(10 �� x  and 
21
1))()((1 21 tt tty EE�� . Then 

0)()()(    yGyFxF  and 0)( �xG , so that xy ; . Note that 0)11(
21
��� tt bF  for any 

)()( 21 ttb EE� , so that the set 2Q)(U cc�x;  does not contain a neighborhood of y  in 2Qcc . As 
)(L\P)(U xx ;;  , this is a contradiction with the lower semicontinuity of the restriction of ;  to 

2Q cc . This proves that )()()()( tt EWEDWD !  for all W�t , in particular, )()( WEWD !  for all 0!W . 
The map )1(ln 1FF �6  defines a bijection between �  and a subset /  of �R . Thus, we can 

write }R,{ ��/� OOF� , where ��OF  is the NPV functional satisfying OO  � )1(ln 1F . In 

what follows the discount function associated with OF  is denoted by OD . By construction, for any 

W�t , the function )()( tOO DWDO6  from /  into ]1,0(  is strictly decreasing. The condition 

WW 1111 ba tt ���� ; , W�t , 1t! ba  implies that for any W�t , the image of the function 

)()( tOO DWDO6  is dense in ]1,0( . In particular, /  is dense in �R  (as the image of the dense 

subset }),1({ /�ODO  of ]1,0(  under the continuous map zz ln�6 ). 

Let us prove that },{ /�ODO  can be complemented to a D-family. For every /� � \RO  set 

)(sup:)(
:

tt c
cc
DD

O
O

!/�
 . By construction, OD  is a positive discount function. Let us show that 

}R,{: �� $ ODO  is a D-family. Given W�d t0 , define the function ��� oRR:I  by 

)()(:)( tOO DWDOI  . 

First, we prove that I  is strictly decreasing. As /  is dense in �R  and the functions 
)(tODO6  and )(WDO O6  on /  are decreasing, we have 

)(lim
)(
)(

lim
)(lim

)(lim

)(sup

)(sup

)(
)(

)(
,,

,

,

:

: c
tttt cc

c

c

cc
ccc

ccc

c
cc

c
cc I

D
WD

D

WD

D

WD

D
WD

OI
OO

O

O

O

O

O

O

/��o/��o
/��o

/��o

!/�

!/�      , /� � \RO .  

Pick 210 OO �d . Since /  is dense in �R , there are /�cc 21,OO  such that 2211 OOOO �c�c� . We 
have )()(lim)( 1,1

1

OIIOI
O

ct 
/��o

c
cc

, )()(lim)( 2,2
2

OIIOI
O

cd 
/��o

c
cc

, and, therefore, 

)()()()( 2211 OIOIOIOI tc!ct . 
To complete the proof we have to show that I  is onto ]1,0( . Assume by way of contradiction 

that ]1,0()R( z�I . Then, since I  is monotone, )R(\]1,0( �I  contains an interval of positive 
length, which is a contradiction with density of )(/I  in ]1,0( . ▀ 

 

Proof of Proposition 5. 
(a)�(b). Trivial. 
(b)�(a). Let �  be a representation of ; . In view of Proposition 3 (part (b)), we have to 

show that },{ )( /� ( OOF� , where /  is a dense subset of �R . Pick ��F  and denote by D  the 

discount function associated with F . Note that if 2Q cc�x , then so is )( W�x . 
First, we prove that D  is positive. Assume by way of contradiction that 0)(  WD  for some 

0!W . Consider a project 20 Q11 cc��� Wax . Then 0)( �xF , whereas 0)( )(  �WxF , a 
contradiction to stationary. 
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Pick 0!t  and consider the project 20 Q11 cc��� tcy  for some 1tc . If )(1 tc D , then 
0)(1)(  �� tcyF D  and, by stationarity, we must have 

0)()11()()()())(1()( )( t �� ��� ��� �
�

W
WWWDWDWDDWD yFcFtctt t  (10) 

for any 0!W . We consider two cases. 
Case 1: 1)( �tD . Setting ))(1,1[ tc D� , a similar argument used to obtain (10) yields 

0)()( ���� WDWD tc . Tending �o )(1 tc D  in the last inequality and combining the result with 

(10), we obtain the Cauchy functional equation )()()( WDDWD tt  � , 2R),( ���Wt . Its general 

positive nonincreasing solution is given by tet OD � )( , ��RO  (Aczél, 1966, p. 38). 
Case 2: 1)(  tD . Using (10) with t W , we get 1)2(  tD . Iterating this result, we conclude 

that 01 D . 

Thus, there exists ��/ R  such that },{ )( /� ( OOF� . Pick 1t! ba . By assumption, there 

exists 0!t  such that tt ba 1111 00 ���� ; . Therefore, there is /�O  such that 

]ln,ln( 11 atbt ���O . This proves that /  is dense in �R . ▀ 
 

Proof of Lemma 9. 
Given *P�+  and P�z , set ++ � D}{:)( zz . 
We shall prove a slightly stronger result: if )(�*�x , then )(U)(U xx ';;  . During the 

proof cl  and int  are the topological closure and interior operators in � . Clearly, )(U)(U xx ';; � . 

To prove the converse, we have to show that for any P�y , )()( yx �� c�c  �  )()( yx �� � . 
Note that )()( yx �� c�c  implies )())((cl))((cl))((cl))((cl yyyxx ������� �c� c�c c� , 
where the last inclusion follows from the fact that )(y�  is closed in �  (as the intersection of the 

closed half-space D}{y  and � ). Therefore, it is sufficient to prove that ))((cl)( ��� c�� xx , 
which readily follows from regularity of x . Indeed, let O  be an open (in � ) neighborhood of a 
point from )(int x� . Since )(int xO ��  is a nonempty open set and � c  is dense in � , 

)(int xO ��  intersects � c  and, therefore, also intersects �� c�)(x  (as )()(int xx �� � ). Thus, 
every neighborhood of a point from )(int x�  intersects �� c�)(x , so that 

))((cl)(int ��� c�� xx . Taking the closure of the both sides, we get 
))((cl))((intcl)( ���� c�� xxx  due to regularity of x . ▀ 

 

Lemma 13. 
Given a D-family $ , the map )(:)( $ OO Fh  is a homeomorphism between �R  and )($�  

endowed with the subspace topology. 

Proof. 
Clearly, h  is a bijection. Pick ��R*O . 

Consider a convergent sequence *OO on . As for any P�x  the function )()( xF $
OO 6  is 

continuous, )()(
*
$$ o

OO FF
n

 pointwise, so that h  is continuous at *O . 
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In order to prove that 1�h  is continuous at )(
*
$

O
F , pick 0!t  and recall that by the definition of 

a D-family, the function )(tODO6  is a homeomorphism of �R  onto ]1,0( . In particular, as its 

inverse is continuous, for any 0!H , there is 0!G  such that GDD
OO ��  )()( tt  �  HOO �� * . As 

})()(:{})1()1(:{ )()()()(
* GDDG

OOOOOO �� �� 
$$$$ ttFFFF tt  is an open neighborhood of )(

*
$

O
F  in 

)($� , we are done. ▀ 
 

Proof of Lemma 10. 
To simplify the notation, we write g  instead of )($

xg  during the proof. Since g  is continuous 

on �R , 0)()0( z�f xg , and 0)0()(lim z 
�fo

xg O
O

, there is a compact interval ��� RI  that 

contains all the roots of g  (if any). We claim that g  has a finite number of roots. Indeed, assume 
by way of contradiction that the set }0)(:I{:  � / OO g  is infinite. Then, by the Bolzano–
Weierstrass theorem, /  has an accumulation point I*�O . Let }{\}{ *OO /�n  converge to *O . 

Then 0)(lim)( *   
fo nn
gg OO  and 0)())()((lim)( ***  �� c

fo
OOOOO nnn

ggg , which contradicts 

condition (b). Therefore, )(x$  is a union of finitely many pairwise disjoint closed intervals. By 
condition (b), all the intervals are proper, so that )(x$  is regular closed. ▀ 

 

Proof of Proposition 6. 
(b). Let ;  be an SPO with a representation � . 

Assume that ;  is )(DRDPP -consistent. Pick ��F  and denote by E  be the discount 
function associated with F . Pick 0!W . 

Claim 1: if 0)(  WD , then 0)(  WE . Since FD z , there is ),0( W�t  such that 0)( !tD . Set 

ttx 1))(1(10 D�� . Then tcxDPPxDPP  � )1()( )()(
W

DD  for any R�c . Thus, W1~ cxx �  and 

we must have )1()(
}{}{ WcxIxI FF � DD . The last equality holds for all R�c  if and only if 0)(  WE . 

Claim 2: if 0)( !WE , then )()( WDWE t . Indeed, assume by way of contradiction that 
)()( WEWD !  and consider the projects WWD 1))(1(10 �� x , WWE 1))(1(10 �� y . Then 

WDD   )()( )()( yDPPxDPP , while 0)( �xF  and 0)(  yF  so that it is not true that yx ~ ; a 

contradiction with )(DRDPP -consistency. 
Claim 3: if 0)( !WE , then there is 1tO  such that )()( tt ODE   for all ],0( W�t . Indeed, pick 
),0( W�t . By claims 1 and 2, 0)()( !t WDWE  and 0)()( !t tt DE . Consider the projects 

WWD 1))(1(10 �� x , WWDDHHD 1)()(1))(1(10 tty t ���� . Then WDD   )()( )()( yDPPxDPP  

for any 0!H . Thus, yx ~  and we must have )()(
}{}{
yIxI FF DD  . In view of claim 2, 1)(

}{
 xI F D . 

The equality 1)(
}{

 yI F D  holds for all 0!H  if and only if )()()()( WDWEDE dtt . By considering 

the projects ttx 1))(1(10 D�� c  and WWDDHHD 1)()(1))(1(10 tty t ���� c  with 0!H , in the 

same manner we arrive to )()()()( WDWEDE ttt . 
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Claim 4: if 0)()( ! WODWE , 1!O , then )()( tt ODE   for any ���Rt . Pick ���Rt . If 
],0( W�t , the statement follows from claim 3. Now assume that W!t . If 0)(  tD , the statement 

follows from claim 1. If 0)( !tD , then, by claim 3, either )()( tt ODE   or 0)(  tE . Assume that 
0)(  tE  and consider the projects tcx 11))(1(10 ��� WWE  and tcy 110 �� . Then 

tyDPPxDPP   )()( )()( DD  for sufficiently large c , whereas 0)(  xF  and 0)( �yF  for any c ; a 

contradiction with )(DRDPP -consistency. This proves that )()( tt ODE  . 
Claim 5: if 0)()( ! WDWE , then either DE   or there is ),[ f�� Wc  such that 

¯
®


!
d

 
сt
сtt

t
if0
if)(

)(
D

E . From claims 2 and 3 it follows that either DE  , or 
¯
®


!
d

 
сt
сtt

t
if0
if)(

)(
D

E , 

),[ f�� Wc , or 
¯
®


t
�

 
сt
сtt

t
if0
if)(

)(
D

E , ),( f�� Wc . Unless 0)(  tD , the latter opportunity 

contradicts )(DRDPP -consistency: consider projects x  and y  such that 

cyDPPxDPP   )()( )()( DD  and the function )()( xGt t
D6  (resp. )()( yGt t

D6 ) is continuous at c  

(resp. 0)(lim )( �
�o

yGtct

D ), then 0)(  xF , but 0)( �yF . 

Claim 6: FE z . Since FD z , there is W c  such that 0)( !cWD . Assume by way of 
contradiction that FE   and consider the projects )(1)1)(1()( tctttx WW cc ��  and W c�� 110 cy . 

Then WDD c  )()( )()( yDPPxDPP  for sufficiently large c , whereas 0)(  xF  and 0)( �yF  for 
any c . 

Combining claims 1–6 we get that },{},{ )()( *��7� JW D
J

D
W HG�  for some ���7 R  and 

])0(1,1[ ��* D . Without loss of generality, we may assume that }){suppint( D�7 . Clearly, 7  

must be dense in }){suppint( D  in order to ;  be )(DRDPP -consistent. 

To prove the converse, assume that },{},{ )()( *��7� JW D
J

D
W HG� , where 7  is a dense 

subset of }){suppint( D  and ])0(1,1[ ��* D . Clearly, if )(Q D�x , then 

},{})),([,{}0)(:{ )()()( *��7��f� t� JW D
J

DD
W HxDPPGxFF � . Therefore, if )(Q, D�yx , then 

yx ;  �  )()( )()( yDPPxDPP DD d  �  )()( )()( yRDPPxRDPP DD t . 
(a), (c). These follow from part (b). 
(d). Let ;  be the least )(DRDPP -consistent SPO. By part (c) it is induced by 

]})0(1,1[,{})}{suppint(,{ )()( ���� DJDW D
J

D
W HG� . Note that unless 1)0(  �D , the preorder 

over �  induced by )(Q D  is not antisymmetric so that we cannot use Lemma 8 to derive the natural 
domain. 

Pick P�x . We consider three cases. 
Case 1: )(Q D

��x . In this case, the restriction of ;  to }{Q )( x�D  is total. 

Case 2: there are ���R,Wt  such that 0)( tD
tG  and 0)( �D

WG . Then one can show that in order 

to the restriction of ;  to }{Q )( x�D  be total we must have )(Q D�x . 

Case 3: 0)()( txG D
W  for all ���RW . Then in order to the restriction of ;  to }{Q )( x�D  be 

total we must have 0)()( txH D
J  for any ])0(1,1[ �� DJ , or, equivalently, )(Q D

��x . 
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It is straightforward to verify that the restriction of ;  to )()()( QQQ DDD
�� ��  is total. 

(e). Let ;  be the SPO induced by ]})0(1,1[,{})}{suppint(,{ )()( ���� DJDW D
J

D
W HG . It is 

routine to verify that 
)(D

RDPP  is a utility representation for the restriction of ;  to )(D D . ▀ 
 

Proof of Proposition 7. 
(a)�(b). First, we show that if 10 Q11 c��� Wax , 10 Q11 c��� tby , t��W0 , and 

01�;x , then yx ;  (during the proof, we refer this implication as (*)). Indeed, if it is not true that 

yx ; , then, by 1Qc -completeness, xy ; . Applying the truncation operation to the inequality 
xy ; , we arrive to a contradiction, xxy   � dd WW ;01 . 

Set )1(sup:)( t
F

Ft
��

 D . Clearly, ��D . Let E  be the discount function associated with some 

��G . Pick 0!W  and assume that 0)()( !! WEWD . Setting W110 ax ��  with 

))(1,)(1( WEWD�a , we have 01�;x  and 0)( �xG . Then, for any W!t  and 1tb , (*) implies 

0)11( 0 ��� tbG . This proves that 0)(  tE  for all W!t . Thus, 

]}1,0[})0{\}{supp(),(,{},{ )(
,

)()( u��� DOD
O

DF tGFF t� . By (*), the set  7 : { :t  there is ]1,0[�O  

such that ��)(,
D
OtG } is dense in }0{\}{supp D . 

We claim that �� )(
1,

)( D
W

D
W GG  for any }){suppint( DW � . Indeed, pick }){suppint( DW �  and 

consider a project x  such that the function )()( xGt t
D6  is continuous except at W , 0)()(  xG D

W , 

0)()( �xF D , and 0)()( �xGt
D  for all Wzt . Assume by way of contradiction that ��)(DWG . Then, as 

0)( �xF  for any }{\]}1,0[R),(,{},{ )()(
,

)()( D
W

D
O

DF O GtGFFF t u��� �� , we have 01~ �x . By 

stability under truncation, 00 1)1(~ � � dd WWx . Since 7  is dense in }0{\}{supp D , there is 7�t  

and ]1,0[�O  such that W!t  and ��)(,
D
OtG . We have 0)()( )()(

,   d xGxGt
D

WW
D
O , which is a 

contradiction to 01~ �dWx . By considering a project x  such that ttx sgn)(sgn �  for any ��Rt , 

in a similar manner, we can show that �� )(
0

)( DF GF . 

(b)�(a). Clearly, �  is totally ordered by ≽1, so that ;  is 1Qc -complete (Lemma 3). To 
establish stability under truncation, it is sufficient to prove that for any ��F  and ��RW , the 
NPV functional )( WdxFx6  also belongs to � . Pick P�x  and ��RW . We have 

)()( )()( xFxF F
W

F  d ; )()( )()( xGxF D
WW

D  d  if }){suppint(}0{ DW �� ; )()( )()( xFxF D
W

D  d  if 

}){suppint(}0{ DW �� ; )()( )(
,

)(
, xGxG tt

D
OW

D
O  d  if Wd� t0 ; )()( )()(

, xGxGt
D

WW
D
O  d  if W!t  (note that the 

conditions ��)(,
D
OtG  and W!t  imply that }){suppint(}0{ DW �� ). ▀ 

 

Proof of Proposition 8. 
(b). Let ;  be an SPO with a representation � . 

Assume that ;  is F
GRI -consistent. Pick ��H  and F

Gx Q� . Consider P�y  such that 

0)()(   yGyF . For any real O , we have F
Gyx Q�� O  and )()( yxRIxRI F

G
F
G O� . By F

GRI -
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consistency, we must have )()(
}{}{

yxIxI HH O� DD . The last equality holds for all real O  if and only 

if 0)(  yH . This implies that bFaGH �  for some scalars a  and b  (Aliprantis and Border, 
2006, Lemma 5.91). As ��H , we have 1 � ba . Therefore, }W,)1({ ��� wGwwF� , 

W~W � . )1,0(W�  is dense in )1,0(  (indeed, if W\)1,0(  contained a proper interval, than it 

would contradict F
GRI -consistency). Density of )1,0(W�  in )1,0(  implies that �  and 

)}1,0(W,)1({ ���� wGwwF  represent the same SPO. 

To prove the converse, assume that }W,)1({ ��� wGwwF� , W~W)1,0( �� . If 
F
Gx Q� , then ^ `W),)(1[,)1(}{ ��f��� � xRIwGwwFx F

G�D . Therefore, provided that 
F
Gyx Q, � , yx ;  �  )()( yRIxRI F

G
F
G t . 

(a), (c). These follow from part (b). 
(d). Let ;  be the least F

GRI -consistent SPO. By part (c) it is induced by 

]}1,0[,~)1(~{ ��� wGwFw . It is straightforward to verify that the restriction of ;  to F
GD  is total. 

On the other hand, if F
Gx D� , i.e., 0)(~ �xF  and 0)(~ txG , then x  and F

Gy Q�  are incomparable 

(recall that 0)(~ tyF  and 0)(~ �yG  for all F
Gy Q� ). 

(e). Let ;  be the SPO induced by ]}1,0[,~)1(~{ ��� wGwFw . It is straightforward to verify 

that 
F
GRI  is a utility representation for the restriction of ;  to F

GD . ▀ 
 

Lemma 14. 
For the function ),1[Q: 1 f�ocS  defined by bb  �� :)11( 0 WS , the following statements 

hold. 
(a) S  is a profitability metric. 
(b) An SPO is S -consistent if and only if it is induced by },{ )1( 0 *�JJH , where 

]1,0[)1,0( �*� . 

(c) The least S -consistent SPO is induced by ]}1,0[,{ )1( 0 �JJH . 

(d) The natural domain of S  is }0)(,0)0(:P{\PD ��ft� xxx . 
(e) The natural extension of S  is the total preorder over D  with a utility representation 

�o RD:S  given by (6). 

Proof. 
It is sufficient to prove part (b). The rest then follows from Proposition 8 with )(FFG   and 

)1( 0FH  . 
Let ;  be a S -consistent SPO and &(.� �  represent ; . Pick ��F  and denote by D  the 

discount function associated with F . Pick ���R,Wt . As )11()11( 00 tbb �� �� SS W , 1tb , by 

S -consistency, we have ))(1()11()11())(1( R0}{0}{R tbIbIbIbI tFF DWD W �� �� �� ��
��

DD . This 

equality holds for all 1tb  if and only if )()( tDWD  . Therefore, },{ )1( 0 *� JJH� , ]1,0[�* . 

)1,0(�*  is dense in )1,0(  (indeed, if *\)1,0(  contained a proper interval, than it would contradict 
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S -consistency). Density of )1,0(�*  in )1,0(  implies that �  and )}1,0(,{ )1( 0 �*�JJH  represent 

the same SPO. 
It is straightforward to verify that the SPO induced by },{ )1( 0 *�JJH , ]1,0[)1,0( �*�  is S -

consistent. ▀ 
 

Proof of Proposition 9. 
Let �  be a representation of ; . 

(a)�(d). If ;  is the NPV criterion induced by )(FF , then (d) holds with FD  . Now assume 

that ;  is monotone and FPI -consistent for some }{\ )(FFF &(.� . From part (b) of Proposition 

8 with )(FFG   it follows that there are }{\ FD ��  and ])0(1,0[ ��* D  such that 

},{ )( *� JD
JH� . Without loss of generality, D  and *  can be chosen such that 1sup  * . As 

FD z , from monotonicity it follows that for any }0{\*�J  and 0!H , �z��* ),( JHJ . Thus, 

*  is dense in )1,0( . This implies that �  and )}1,0(,{ )( �*�JD
JH  represent the same SPO. 

(b)�(d). By Lemma 6, there are ��D  and ]1,0[�*  such that },{ )( *� JD
JH� . As it is 

shown in the proof of the “(a)�(d)” part, monotonicity implies that D  and *  can be chosen such 
that ]1,0[)1,0( �*� . 

(c)�(d). Set )1(sup:)( t
H

Ht
��

 D . If FD  , then (d) trivially holds with that D . We assume 

that FD z  in what follows. Denote by F  the NPV functional induced by the discount function D . 
Let E  be the discount function associated with some ��G . Note that ED t . Pick 0!W  

such that 0)( !WD . We claim that )()()()( WDWEDE  tt  for any W�� t0 . If 0)(  tE  or 
1)(  WE  (and, therefore, 1)(  WD ), the statement holds trivially. Assume that 0)( !tE  and 
1)( �WE  and put ttx 1))(1(10 E��  and W110 ay �� , ))(1,1[ WE�a  (with the convention 

�f 01 ). Then 0)(  xG , 0)( �yG , and, therefore, by 1Qc -completeness, yx ; . Since 
0)( �JxF  for any ))()(,0( tt DEJ � , by stability under reduction, we must also have 0)( �JyF . 

The latter inequality holds for all ))(1,1[ WE�a  and ))()(,0( tt DEJ �  if and only if 
)()()()( WDWEDE dtt . If 1)( ztE , the inverse inequality, )()()()( WDWEDE ttt , can be derived 

in the same manner by considering the projects WWE 1))(1(10 �� cx  and tby 110 �� c , 

))(1,1[ tb E� . Finally, if 1)(  tE , combining the inequalities )()()()( WDWEDE dtt  and ED t , 
we also arrive to )()()()( WDWEDE  tt . 

Thus, },{ )( *� JD
JH�  for some ]1,0[�* . As it is shown in the proof of the “(a)�(d)” 

part, monotonicity implies that ]1,0[)1,0( �*� . 
(d)�(a), (d)�(b), (d)�(c). Trivial. ▀ 
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