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Abstract

In this paper, we make two contributions to the MSV literature. First, we propose two

new MSV models that account for leverage e¤ects. Second, we compare the small sample

performances of Quasi Maximum Likelihood (QML) and Monte Carlo Likelihood (MCL)

methods through Monte Carlo studies for Constant Correlations MSV and Time Varying

Correlations MSV and for the two MSV models with leverage we propose. We also

provide the speci�c transformations necessary for the MCL estimation of the proposed

MSV models with leverage. Our results con�rm that the MCL estimator has better small

sample performance compared to the QML estimator. In terms of parameter estimation,

both estimators perform better when the series are highly correlated. In estimating the

underlying volatilities and correlations, QML estimator�s performance comes closer to

that of MCL estimator when the SV process has higher variance or when the correlations

are time varying, while it is performing relatively worse in MSV models with leverage.

Finally we include an empirical illustration by estimating an MSV model with leverage

that we propose using a trivariate data from the major European stock markets.
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1 Introduction

In �nancial time series literature, it is already established that the volatilities of asset returns

are changing over time. Moreover, they are likely to be serially correlated. To illustrate

this stylized fact with an example, in Figure 1 we present the indices and returns (100 x

log(Pt=Pt�1)) of FTSE-100 and DAX stock markets between dates 4/1/2005 and 4/11/2011.

We also plot the squared returns, as a proxy of volatilities, and a rolling window estimate of

correlations, with a window of 60 days. It is observed that the volatilities are changing over time.

Moreover, the volatilities are clustered; i.e. higher (lower) values of volatilities are followed by

higher (lower) values, which implies that the volatilities are serially correlated. To capture this

kind of a dynamic volatility e¤ect, the generalized autoregressive conditional heteroskedasticity

(GARCH) models have been proposed by Engle (1982) and Bollerslev (1986). In GARCH

models the time varying volatility is modelled as a deterministic function of squared previous

day returns and previous day volatilities; therefore in GARCH approach the volatilities are

observation driven. Currently a wide range of GARCH models are available in the literature

and are well documented in the surveys: see Bollerslev et al. (1992) for univariate and Bauwens

et al. (2006), Silvennoinen et al. (2009) for multivariate models.

An alternative approach to modelling time varying volatility is to consider it as an unob-

served component and let the logarithm of it follow an autoregressive process. Therefore in

this approach, the volatilities are parameter driven. Models of this kind are named as sto-

chastic volatility (SV) models in the literature. The SV approach is attractive because of its

similarity to the models used in �nancial theory to describe the behavior of prices; see Hull and

White (1987), Taylor (1986, 1994), and Shephard and Andersen (2008) for the origins of SV

models. Moreover it has been shown that the SV models describe the behavior of volatilities

more accurately compared to GARCH models (see for example Danielsson (1994), Kim et al.

(1998), and Carnero et al. (2004)). Given the way the SV models are set up, their statistical

properties are easy to derive from the process that the volatilities follow. However, although

statistically more attractive than GARCH models, SV models have the disadvantage in terms

of estimation because their exact likelihoods are di¢ cult to evaluate. The following survey pa-

pers are available about the univariate and multivariate SV models and estimation methods:

Broto and Ruiz (2004), Asai et al. (2006), Chib et al. (2009), Ghysels et al. (1996), Yu and

Meyer (2004), Maasoumi and McAleer (2006).

Several methods have been proposed for estimating SV models. A relatively easy approach

is the quasi-maximum likelihood estimation (QML) proposed independently by Nelson (1988)

and Harvey et al. (1994). In this approach, the log-squared returns are modelled as a linear

state space form where the transformed innovations are assumed to follow a Gaussian distri-

bution although in fact the true distribution is based on ln�21 (see Sandman and Koopman

(1998) for the univariate and Asai and McAleer (2006) for the multivariate case). Ruiz (1994)
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showed that the QML estimators are consistent and asymptotically normal. However due to

the Gaussianity assumption, QML approach is an estimation based on approximations and

therefore, as noted by several papers as Jacquier et al. (1994), Breidt and Carriquiry (1996)

and Sandmann and Koopman (1998), QML estimator is ine¢ cient.

The evaluation of exact likelihood requires high dimensional integration which could be

based on evaluating these integrals with simulation methods and then maximizing the result-

ing likelihood function. This class of estimation approaches include the accelerated importance

sampling (AGIS) approach developed in Danielsson and Richard (1993) and e¢ cient impor-

tance sampling (EIS) approach proposed by Liesenfeld and Richard (2003, 2006), and the

Monte Carlo likelihood (MCL) approach proposed by Sandman and Koopman (1998). Dif-

ferent from the QML estimation, the MCL method of Sandman and Koopman (1998) used

log-squared transformation of returns taking into account the true distribution of the errors

and therefore modelling the log-squared returns via a linear non-Gaussian state space model.

A review of these importance sampling methods could be found again in Asai et al. (2006).

The MCLmethod considered in this paper is the one proposed by Jungbacker and Koopman

(2006) that extended the theoretical results of Shephard and Pitt (1997), Durbin and Koopman

(1997), and Jungbacker and Koopman (2005). In this method, the returns are modelled without

the log-squared transformation. Durbin and Koopman (1997) showed that the loglikelihood of

the state space models with non-Gaussian errors can be written as a sum of the loglikelihood

of the approximating Gaussian model and a correction for the departures from the Gaussian

assumptions with respect to the true model. This form of likelihood has the advantage that

the simulations are only required for the departures of the likelihood of the true model from

the Gaussian likelihood, rather than for the likelihood itself. Jungbacker and Koopman (2006)

used this approach to estimate three multivariate stochastic volatility (MSV) models: the

stochastic time varying scaling factor model, where the variance matrix of the returns are

scaled by the log-volatilities, the constant correlation MSV model of Harvey et al. (1994) and

a time varying correlation MSV model based on Cholesky decomposition. In the latter set up,

the correlation dynamics is driven by the volatilities and a correlation parameter. Tsay (2005)

adopted a Cholesky decomposition based approach to ensure the positive de�niteness of the

covariance matrix. The MSV model he proposed is basically the same time varying correlation

MSV model as considered in Jungbacker and Koopman (2006) with the correlation parameter

following a stochastic autoregressive process.

Finally, the Monte Carlo Markov Chain (MCMC) methods are receiving much attention

since they provide the most e¢ cient estimation tools (see Andersen et al. (1999)). For a survey

on MCMC methods and MCMC estimation of several MSV models, see Asai et al. (2006),

Meyer and Yu (2000), Chib et al. (2009). MCMC method will be outside the scope of this

paper.
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When �tting an MSV model to a �nancial time series, researchers are ultimately interested

in estimating the underlying volatilities and correlations. Therefore, when making a comparison

of performances between di¤erent estimators, one should also consider looking at their relative

performances in estimating the in-sample volatilities and correlations. In this respect, we

employ several Monte Carlo (MC) experiments where the performances of QML and MCL

methods in estimating the parameters, volatilities and correlations are compared. It is already

known that MCL methods have better small sample properties compared to QML methods in

parameter estimation. However, in the literature there is a need for Monte Carlo simulation

studies comparing QML and MCL methods in terms of in-sample volatility and correlation

estimations in a multivariate setup and for di¤erent parameter sets. In this paper, we attempt

to �ll this gap with a number of MC experiments for several models.

For our MC experiments, we �rst consider the Constant Correlation MSV model of Harvey

et al. (1994). As pointed out by Tsui and Yu (1999), the correlations do not have to be

constant for certain assets. This is also observed in Figure 1 that the estimated correlations are

changing over time. For this reason, we also consider the Time Varying Correlation MSVmodel

discussed in Jungbacker and Koopman (2006). Another stylized fact is the so called leverage

e¤ect which refers to the negative relation between the current returns and future volatilities.

Black (1976) and Christie (1982) found that there is a negative relation between the ex-post

volatility of the return rates on assets and the current value of the asset. One way to explain

this is that decreasing prices of the assets (negative returns) imply an increased leverage of

the �rms which is believed to increase uncertainty and hence volatility. (See Gyhsels et al.

(1996)). As an example, in Figure 1, we see that on average the volatilities between t = 800

and t = 1100, where the indices are in general falling, are much higher than the volatilities of

the period between t = 1100 and t = 1600, where the indices are in general rising. Jungbacker

and Koopman (2005) proposed a univariate SV model with leverage and discussed how to

estimate it via MCL method. In our paper we propose a direct multivariate generalization

of this model and refer to it as MSV with diagonal leverage, where the correlations between

the innovations of returns and volatilities are diagonal. A similar but more restrictive model

has been proposed, but not estimated, by Danielsson (1998), where these correlations are

modelled as a function of the variances of the innovations in the volatility equations. Asai

and McAleer (2006) estimated the MSV with leverage model of Danielsson (1998) via MCL

method of Sandman and Koopman (1998) and they provided the log-squared transformation of

the model necessary to implement this estimation. Using the transformations they provided, it

is also possible to estimate MSV with leverage model of Danielsson (1998) with QML method.

Furthermore, we propose the MSV with non-diagonal leverage model where the correlations

between the innovations of returns and volatilities are non-diagonal; i.e. the innovations of

the volatility of series i is correlated with the innovations of the returns of series j. We
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also provide the necessary transformations to estimate these two MSV with leverage models

via MCL method which are derived based on the univariate estimation in Jungbacker and

Koopman (2006). We adapt the transformations of Asai and McAleer (2006) for estimating

our two MSV models with leverages via QML method.

The results obtained in this paper con�rm that QML estimator has lower small sample

performance than MCL estimator. When the correlations are constant, the QML estimator

is performing closer to the MCL estimator especially when the true value of the underlying

correlation is high and/or if the variances of the SV processes are high. Also, when the

correlations are let to vary over time, the performance of the QML estimator approaches to

that of the MCL estimator even with lower correlations. On the other hand, with low constant

correlations and low variances of the SV processes, the e¢ ciency of the QML estimator is

relatively lower. When leverage is allowed in the model, the performance of QML estimator

is worse in estimating the underlying correlations compared to its performance in the model

without leverage. Higher values in the true leverage matrix decreased the performance of QML

estimator of the correlations even more. From our results, we conclude that the QML estimator

could be used when the series are expected to have high correlations (whether constant or time

varying) and when the variances of the SV processes are high. Particularly in the case of MSV

models with leverage we do not recommend the use of QML estimator. On the other hand,

when it is of interest to estimate models with high number of series, the implementation of QML

estimator is easier and more feasible than that of MCL estimator. Moreover, the analytical

derivatives needed for the MCL estimation are harder to obtain with large cross-sections.

One could choose to use numerical derivatives, but the derivatives obtained by numerical

approximation for large state vectors could be very time consuming and numerically unstable.

Therefore we come to the conclusion that when estimating MSV models for several series, such

as modelling the returns of international stock markets, MCL method should be preferred for

all the models considered in this paper. The QML method could be used for the estimation of

models with medium-to-large number of series, such as the returns of a high number of assets

in a stock market, especially when the series are expected to be highly correlated with high

variances in the SV processes.

The paper is organized as follows: in Section 2.2 we discuss brie�y the Constant Correlation

MSV model, Time Varying Correlation MSV model and the two MSV models with leverage

we propose and later provide information on how these models can be estimated via Quasi

Maximum Likelihood and Monte Carlo Likelihood methods. In Section 2.3 we explain the

set up of our Monte Carlo experiments and discuss the results. In section 2.4, we estimate a

trivariate MSV model with leverage for the returns on three major European stock markets.

Finally in section 2.5, we discuss further topics for research and conclude.
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2 Multivariate Stochastic Volatility (MSV) Models

2.1 The Basic Model

The univariate SV model was proposed by, among others, Taylor (1982, 1986). Harvey et

al. (1994) extended this univariate SV model to a multivariate context, proposing the �rst

multivariate SV (MSV) model. If we let yt = (y1t; y2t; :::; ykt)0 be a kx1 vector of observations

at time t and ht = (h1t; h2t; :::; hkt)
0 be the corresponding log-volatilities, then this model is

de�ned as:

yt = H
1=2
t "t (1)

Ht = diag fexp(h1t); exp(h2t); :::; exp(hkt)g = diag fexp(ht)g

ht+1 = � + �ht + �t (2)

h1 v N ((Ik � �)�1�;�0)

 
"t

�t

!
v N

 
0;

"
P" 0

0 Q�

#!
(3)

where � is a kx1 vector of, and � is a kxk matrix of parameters. Ik denotes a kxk identity

matrix. The covariance matrices P" and Q� are of the corresponding errors "t and �t. The

diagonal elements of P" are restricted to be equal to one for identi�cation purposes, therefore

P" is a correlation matrix. For simplicity, we do not consider volatility spillovers, i.e. �

is a diagonal matrix. However, the volatilities ht are still dependent on each other via Q�
matrix. Finally, the (i; j) element of �0 is the (i; j) element of Q� divided by (1 � �ii�jj).1

By construction, this model assumes constant correlations, therefore following Yu and Meyer

(2006), we will refer to this model as Constant Correlation MSV (CCMSV) model. In our

analysis, we focus on the parameters, in order: 	 = (vecl(P")
0;�0; diag(�)0; vech(Q�)

0)0.2 In

this model there are k2 + 2k parameters to estimate.

1That is, �0 satis�es the stationarity condition: �0 = ��0� + Q�. Therefore the elements of �0 can be

obtained by: vec(�0) = (Ik2 ��
�)�1vec(Q�); where vec is the operator that stacks the columns of a matrix
and 
 is a Kronecker product.

2The operator vec stacks all columns of a matrix, while vech stacks the columns of the lower triangular part

of a matrix and vecl stacks the columns of the strict lower triangular (exluding the leading diagonal from the

lower triangular matrix) part of a matrix.
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2.2 Time Varying Correlation MSV

The Time Varying Correlation MSV model considered in our paper is the one mentioned in

Jungbacker and Koopman (2006). We will refer to this model as TVCMSV. Following the

notation above, the observation equation (1) is modi�ed as:

yt = DH
1=2
t "t (4)

"t v N(0; Ik)

where D is a lower unity triangular matrix. The idea is to decompose the conditional

variance of yt, V ar(ytjht) = Vt = DHtD0, and therefore having a stochastic dynamics behind

the variances and correlations implied by Vt. If we would call gii;t = exp(hi;t) and D = fqij 6=
0 when i > j; 0 otherwiseg, then the implied correlations by the model are given by:

�ii;t =
iX
s=1

q2isgss;t; i = 1; 2; :::; k

�ij;t =

jX
s=1

qisqjsgss;t; i > j; i = 2; 3; :::; k

pij;t =
�ij;tp
�ii;t�jj;t

=

jX
s=1

qisqjsgss;tvuut iX
s=1

q2isgss;t

jX
s=1

q2jsgss;t

This model is also a special case of factor MSV models proposed by Shephard (1996)

and further studied in Aguilar and West (2000) and Chib et.al. (2006) with the number of

factors being equal to the number of series. A shortcoming of this model is that the driving

forces underlying the volatility and correlation dynamics are the same; gii;t and qij. The

model parameters are 	 = (vecl(D)0;�0; diag(�)0; vech(Q�)0)0. The number of parameters to

be estimated in this model is also given by k2 + 2k.

Tsay (2005) let the correlation parameters to be dynamic in the sense that the unity lower

triangular matrix D becomes Dt = fqijt 6= 0 when i > j; 0 otherwiseg where qijt follows a
Gaussian AR(1) process. Then the equation (4) becomes:

yt = DtH
1=2
t "t; (5)
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where the kx1 vector qt evolves with the equation:

qt+1 = � +	qt + vt

q1 v N ((Ik �	)�1�;�0)

such that:

0B@ "t

�t
vt

1CA v N

0B@0;
264 Ik 0 0

0 Q� 0

0 0 �v

375
1CA

where �0 is de�ned similar to �0. We can put this model to a state space form as follows:

let �t = (h0t; qt
0)0; !t = ((�t)

0; (vt)
0)0; �� = (�0; �0)0 such that:

�t+1 = �� +

 
� 0

0 	

!
�t + !t;where !t v N

 
0;

"
Q� 0

0 �v

#!
(6)

�1 v N
  

(Ik � �)�1�
(Ik �	)�1�

!
;

"
�0 0

0 �0

#!

How to estimate the TVCMSV model de�ned via (5) and (6) via QML and MCL method is

left for future research. The model parameters are 	 = (�0; diag(	)0;�0; diag(�)0; vech(Q�)0)0

and the number of parameters to estimate in this model is k2+5k: In our MC experiments we

only consider the TVCMSV model of Jungbacker and Koopman (2006).

2.3 MSV with Leverage E¤ect

The �rst MSV model with diagonal leverage we propose here is a direct generalization of the

univariate model considered in Jungbacker and Koopman (2005). Changing the de�nition of

the errors slightly, we could rewrite the equations (1), (2) and (3) of CCMSV model as follows:

yt = H
1=2
t P �" "t (7)

ht+1 = � + �ht +Q
�
��t
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with the following modi�cation is made the CCMSV model:

 
"t

�t

!
v N

 
0;

"
Ik L

L Ik

#!
(8)

where L = f�ii; i = 1:::k : �ii � [�1; 1]g is assumed to be a diagonal matrix. Therefore by
construction, the MSV with diagonal leverage model de�ned by equations (7) and (8) implies

constant correlations. A transformation similar to the one in Jungbacker and Koopman (2005)

could be then adapted to write this model in a state space form:

yt = H
1=2
t P �" f "�t + S�2tg (9)

ht+1 = � + �ht +Q
�
� f�1t + �2tg0B@ "�t

�1t
�2t

1CA v N

0B@0;
264 Ik � jLj 0 0

0 Ik � jLj 0

0 0 jLj

375
1CA

where S matrix is a diagonal matrix of the signs of each element of L while jLj is the
absolute value of (the elements of) L matrix. (Therefore SjLj = L). P �" and Q�� are obtained
via Cholesky defactorization of P" and Q�, respectively. The errors are all mutually and serially

independent. It can be shown that the transformed model in equation (9) is consistent with

the MSV model with leverage de�ned by equations (7) and (8).

De�ning the state and signal vectors as �t = (h0t; (Q
�
��2;t)

0)0, �t = ((Q���1;t)
0; (Q���2;t+1)

0)0

and �� = (�0; 0k)0, we have the transformed model ready for MCL estimation:

yt = H
1=2
t P �" f "�t + S�2tg (10)

�t+1 = �� +

 
� Ik

0 0

!
�t + �t; where �t v N

 
0;

"
Q��(Ik � jLj)Q�0� 0

0 Q��jLjQ�0�

#!
(11)

�1 v N
  

(Ik � �)�1��
0

!
;
0

!

vec(
0) =

"
I4k2 �

 
� Ik

0 0

!


 
� Ik

0 0

!#�1
vec

"
Q��(Ik � jLj)Q�0� 0

0 Q��jLjQ�0�

#

The parameter vector to be estimated is therefore 	 = (vecl(P");�0; diag(�)0; vech(Q�)0;

diag(L)0)0 and the number of parameters to estimate in this model is k2 + 3k. A similar but
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more restricted model is considered in Danielsson (1998) and estimated in Asai and McAleer

(2006) where �L = diag(�1�
1=2
11 ; �2�

1=2
22 ; :::; �k�

1=2
kk ) and Q� = f��;ijg. It should be noted that in

relation to our model, �L = Q��LP
�
" :

It could also be the case that the L matrix is non-diagonal in the sense that the errors

in the observation equation of series i are correlated with the errors in the volatility equation

of series j. Then the transformation above should be modi�ed. Assuming that L matrix is

symmetric and (positive or negative) semi-de�nite, we can de�ne a scalar s which takes a value

1 (�1) if the L matrix is positive (negative) semi-de�nite. Therefore replacing the S matrix
with the scalar s and jLj with sL in the equations above would provide us with the necessary
transformation.

yt = H
1=2
t P �" f "�t + s�2tg

�t+1 = �� +

 
� Ik

0k 0k

!
�t + �t; where �t v N

 
0;

"
Q��(Ik � sL)Q�0� 0

0 Q��(sL)Q
�0
�

#!

�1 v N
  

(Ik � �)�1��
0

!
;
0

!

vec(
0)=

"
I4k2 �

 
� Ik

0k 0k

!


 
� Ik

0k 0k

!#�1
vec

"
Q��(Ik � sL)Q�0� 0

0 Q��(sL)Q
�0
�

#

where �� is de�ned as above. The parameter vector in this case is 	 = (vecl(P");�
0;

diag(�)0; vech(Q�)
0; vec(L)0)0 which has k2 + 3k + k(k � 1)=2 parameters to estimate.

The estimation of these MSV with leverage models via QML could be done by adopting

the transformations in Asai and McAleer (2006) and is discussed in section 2:4:1. We assume

throughout the paper for simplicity that whenever the true L matrix is non-diagonal, it is

symmetric. In reality, this is not necessarily the case. Moreover, the symmetricity assumption

is not needed for QML estimation but is required for MCL estimation along with the assumption

that L is positive or negative semi-de�nite.

2.4 Estimating the MSV Models

The estimation methods considered in this paper are the Quasi-maximum Likelihood (QML)

method of Harvey et al. (1994) and Monte Carlo Likelihood (MCL) method of Jungbacker

and Koopman (2006). These estimation methods are brie�y explained below. Originally the

CCMSV model proposed in Harvey et al. (1994) was estimated by Quasi-maximum Likeli-

hood approach while Jungbacker and Koopman (2006) estimated this model by Monte Carlo
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Likelihood approach. The TVCMSV model with deterministic correlation parameter in Jung-

backer and Koopman (2006) was estimated via MCL approach. The univariate MSV model

with leverage in Jungbacker and Koopman (2005) was estimated using MCL method while Asai

and McAleer (2006) estimated the restricted model of Danielsson (1998) by the MCL approach

of Sandman and Koopman (1998). In this paper, we estimate all the models mentioned by

both QML approach of Harvey et al. (1994) and MCL approach of Jungbacker and Koopman

(2006).

2.4.1 Quasi-maximum Likelihood (QML) Estimation

In this estimation method, the multivariate return vector yt is put through a log-squared

transformation in order to obtain a state space formation (SSF) of the model. For the CCMSV

model; the observation equation and the state equation are given as:

log(y2t ) = ht + log("
2
t ) = �1:2703�+ ht + �t

ht+1 = � + �ht + �t

where � is a vector of ones and the mean of log("2it) is known to be �1:2703, and its variance
is �2=2. In fact, the distribution of log("2it) is based on a ln�

2
1 distribution. (See for Sandman

and Koopman (1998) for the univariate and Asai and McAleer (2006) for the multivariate

model). We can replace log("2t ) + 1:2703� with �t whose mean is therefore a vector of zeros

and covariance matrix is given by P�; which is de�ned below. QML method approximates

the distribution of �t with N(0; P�). The estimation procedure is relatively easy: Kalman

�lter is applied to the log-squared returns and afterwards, the one-step ahead prediction errors

and their variances are used to obtain the likelihood function. However, this estimation only

yields minimum mean square linear estimators because Kalman �lter is a linear �lter. How to

improve the performance of QML estimators in a multivariate setting using a nonlinear �lter

is an interesting topic for future research.3 Taking into account the non-Gaussian distribution

of �t, the asymptotic standard errors can be obtained following Dunsmuir (1979). Harvey

(1989, pp 212-3) notes that these asymptotic standard errors can not be used for testing if the

parameters in the matrix Q� are signi�cantly di¤erent from zero. On the other hand usual

quasi-maximum likelihood theory applies and the Bollerslev-Wooldridge robust standard errors

can be used. To estimate the in-sample estimates of volatilities and correlations, a Kalman

smoothing algorithm is employed.

3Watanabe (1999) used a nonlinear �ltering to improve the performance of QML estimators in a univariate

setting.
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Although, the QML method provides consistent estimators, because of the Gaussian ap-

proximation, it is likely to have poor small sample properties. Breidt and Carriquiry (1996)

and Sandman and Koopman (1998) are some of the papers that document the ine¢ ciency of

QML estimation.

It was shown in Harvey et al. (1994) that the ij-th element of the covariance matrix P� is

given by (�2=2)p�ij, where p
�
ii = 1 and:

p�ij =
2

�2

1X
s=1

(s� 1)!
(1=2)ss

p2sij

where (x)s = x(x+ 1):::(x+ s� 1). In our implementation, we �rst maximize with respect
to the variable p2ij, and then after the maximization we obtain jpijj. The sign of pij can be
recovered from the sign of the product of corresponding pair of observations, i.e. yiyj. If more

than half of the multiplications yiyj is positive, then the sign of pij is positive.

One problem with the QML estimation is the existence of inliers, i.e. due to missing data

or simply by chance some returns will be zero or very close to zero. Therefore a log-squared

transformation of this return will explode. To take care of this, several methods are used in the

literature. Kim et al. (1998) considered a transformation such as log(y2t + c) where c = 0:001,

while Fuller (1996) assumed a data driven transformation. We follow here the transformation

discussed in Sandman and Koopman (1998) where the values of log(y2t ) which are less than

�20 is set equal to �20.
Ruiz (1994) and Harvey et al. (1994) suggest that the intercept of the SV process could

be obtained directly from the observations via a moment estimator, and the loglikelihood is

optimized for the rest of the parameters. This could prove useful when the cross section is

large. In fact, this approach could also be used for the MCL estimation when the errors are

assumed to be Gaussian as in QML estimation. However, in this paper we preferred to estimate

all parameters by maximizing the loglikelihood.

The estimation of TVCMSV model via QML method is very similar to the estimation of

CCMSV model. It is only required that in the estimation, the log-squared transformation

should be applied to D�1yt and the resulting loglikelihood function contains an additional

term: T log(det(D)): Given that in TVCMSV set up in our paper the D matrix is lower unity

triangular, its determinant is one and therefore this additional term is equal to zero. Alterna-

tively the D matrix could have been de�ned as a lower triangular matrix, with nonzero values

in the leading diagonal and the intercept term in the volatility equation, �; is a vector of zeros.

Then the additional term in the loglikelihood would be di¤erent than zero. See Jungbacker

and Koopman (2006) for details.

For estimating the MSV model with (diagonal or nondiagonal) leverage via QML method,
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the log-squared transformation as discussed in Asai and McAleer (2006) can be applied to the

model:

log(y2t ) = ht + log("
2
t ) = ht + �t

ht+1 = � + �
�
t + �ht + �

�
t ; �

�
t v N

�
0;���;t

�
E(��t �

0
t) = �L�t

���;t = ��;t � �LP�1" �L+ �LP�1"
��
Pj"j � 2

�
��0
	
� (sts0t)

�
P�1"

�L

��t =
q

2
�
�LP�1" st

�L�t = �LP�1"

hn
Rj"j � c

q
2
�

o
� (st�0)

i
where st is a vector constructed from the signs of the returns in yt vector, c = �1:2703;

and the expressions for Pj"j and Rj"j can be found in the appendix of Asai and McAleer (2006).

It should be noted once again that �L = Q��LP
�0
" in relation to the construction of our leverage

model. As expected, when the parameter values in L matrix are equal to zero, the state space

form representation in CCMSV is obtained. Using this transformation, it is straightforward

to estimate the MSV models with leverage by QML method by using a properly constructed

Kalman �ltering.

2.4.2 Monte Carlo Likelihood (MCL) Estimation

Proposed by Durbin and Koopman (1997) and Shephard and Pitt (1997), this estimation

method is based on constructing the likelihood function for general state space models using

Monte Carlo techniques. Sandman and Koopman (1998) put the log-squared transformed re-

turns to a linear non-Gaussian state space form and proceeds with the estimation taking into

account the true distribution of the log-squared transformed errors. What we refer to as the

MCL method in this paper is the one proposed by Jungbacker and Koopman (2006), which

extended the method in Durbin and Koopman (1997) for the observation vector without the

log-squared transformation. Other simulated maximum likelihood methods are considered by

Danielsson and Richard (1993), Liesenfeld and Richard (2003). In MCL method, the loglike-

lihood function is approximated as a sum of a Gaussian part, constructed via Kalman �lter,

and a minor remainder part which is evaluated using simulations. Therefore it only needs a

small number of simulations to achieve the desirable accuracy for empirical analysis.

After some manipulations Durbin and Koopman (1997) showed that the likelihood function

for the non-Gaussian model based on importance sampling can be written by:
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p(y) = pG(y)

Z
p(yjh)p(h)
pG(yjh)pG(h)

pG(hjy)dh

where pG(y) represents the Gaussian likelihood function of the approximating model which

is de�ned by:

~yt = ht + vt where vt s N(0; Gt) for t = 1:::N

and ht is de�ned as before. If we would de�ne _p(ytjĥt) = @ log p(ytjht)
@ht

and �p(ytjht) =
@2 log p(ytjht)

@ht@h0t
, then Gt = ��p(ytjĥt)�1 for t=1...N and ĥ is the mode of p(hjy). In this paper,

the models considered have p(h) = pG(h), therefore further simpli�cation can be done on the

likelihood.

By de�ning ~yt = ĥt + Gt _p(ytjĥt), it can be shown that the �rst and second derivatives
of log p(hjy) and log pG(hj~y) agree in the mode ĥ. Using the algorithm in Jungbacker and

Koopman (2006) based on Kalman �ltering and smoothing, one can compute this mode. (See

Jungbacker and Koopman (2006) for an illustration with a univariate SV model) Later the

Monte Carlo estimator of the likelihood is then given by:

p̂(y) = pG(~y)M
�1

MX
m=1

w(�m) where w(�m) =
p(yjh)
pG(~yjh)

and �m s pG(hj~y)

where M is the number of samples to be generated from pG(hj~y) using the simulation
smoother algorithm of Jong and Shephard (1995) or Durbin and Koopman (2002). However,

it was noted in Jungbacker and Koopman (2005) that, when Gt = ��p(ytjĥt)�1 is not positive
de�nite, the simulation smoothing method of Durbin and Koopman (2002) cannot be used. In

our estimations we take the number of draws M = 200.

In the case of CCMSV model, �rst and second derivatives _p(ytjht) and �p(ytjht) can be
obtained from the conditional density:

log p(ytjht) = �0:5k log(2�)� 0:5
kX
i=1

hit � 0:5 log(det(P"))� 0:5d0tP�1" dt for t = 1:::T

where dt = H
�1=2
t yt. The possible existence of an inde�nite matrix for �p(ytjĥt) requires the

approach of Jungbacker and Koopman (2005). As Jungbacker and Koopman (2006) suggested,

when the model gets too complicated or when explicit expressions for _p(ytjht) and �p(ytjht) can
not be obtained analytically, as a last resort numerical approximations can be used. For the

CCMSV model the analytical derivatives are provided by Jungbacker and Koopman (2006)
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and these can also be used to obtain the derivatives for TVCMSV. In our estimations, we

used analytical derivatives also for the MSV with leverage models and we provide them in the

appendix.

Finally, the in-sample estimates of the underlying volatilities can be obtained from the

smoothed estimate of the state vector � (which is just volatilities in case of CCMSV and

TVCMSV models but a larger vector in MSV models with leverage) which can be computed

from:

�̂ =

PM
i=1 �

iw(�i)PM
i=1 �

i

where �i is a draw from the conditional density pG(�jy) for the approximating Gaussian
linear model. When making these draws, the simulation device mentioned in Jungbacker and

Koopman (2005) is used to increase the computational e¢ ciency. This device is based on an

unconditional draw from p(�) and on a conditional mean adjustment. (See Jungbacker and

Koopman (2005) for details.)

In our experience, the computational time required for MCL estimation turned out to be

very high compared to that of the QML estimation. Especially when the sample size or the

cross-section size is increased, it takes our code much more time to converge than it does

for QML estimation. When the cross-section size is large, it is not that obvious to write the

analytical derivatives and if instead one considers numerical derivatives in this case, then the

derivatives calculated with respect to large state vectors could be very time consuming and

numerically unstable. The QML method on the other hand is much more �exible.

3 Monte Carlo Experiments

In this section, we report the results of our MC experiments in order to compare the perfor-

mance of QML and MCL methods when estimating the models considered in the paper for

several di¤erent parameter sets. For each model and parameter set, we generated B = 100

time series vectors of dimension k = 2 with sample size T = 500. For comparison purposes, we

look at the performances in parameter estimation as well as in in-sample smoothed volatility

and correlation estimations. The estimation results are reported in terms of MC means of

parameter estimates, corresponding MC standard deviations and root mean squared error for

each parameter estimate as a measure of e¢ ciency.4 On the other hand, the kernel density

estimates of the mean deviations and mean absolute deviations of estimated log-volatilities,

4For comparison purposes, in case of MSV with leverage models as well we report the results for the

parameters in P" and Q� matrices, instead of reporting the results for the Cholesky factors in their formulation

(see section 2:3).
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bhit, and correlations, bpt, from their true values are provided.5 These deviations are calculated

for each series over the number of simulations B; i:e: for each t:

�chit = 1
B

PB
b=1

�bhit;b � hit;b� and j�jchit = 1

B

BX
b=1

���bhit;b � hit;b��� (12)

�bpt = 1
B

PB
b=1

� bpt;b�pt;b
pt;b

�
and j�jbpt = 1

B

BX
b=1

���� bpt;b � pt;bpt;b

����
where j:j is an absolute value. Given that in the case of Constant Correlation MSV

(CCMSV) and MSV models with leverage the correlations are constant (the correlation es-

timate is actually a parameter estimate), the kernel density estimate of the deviations of

B di¤erent estimates of the correlation parameter from the true correlation parameter will

be plotted. However, for the Time Varying Correlation MSV (TVCMSV), as in the case of

volatilities, the kernel density estimates of �bpt and j�jbpt are plotted. Finally mean absolute
errors (MAE) and root mean squared errors (RMSE) of the volatility and correlation estimates

are also reported in tables. In this case, the mean absolute error and the root mean squared

error are calculated as:

MAE =
1

T

1

B

TX
t=1

BX
b=1

���bhit;b � hit;b��� and RMSE = 1

T

1

B

TX
t=1

BX
b=1

�bhit;b � hit;b�2 (13)

MAE =
1

T

1

B

TX
t=1

BX
b=1

���� bpt;b � pt;bpt;b

���� and RMSE = 1

T

1

B

TX
t=1

BX
b=1

�bpt;b � pt;b
pt;b

�2
For the CCMSV model, the true values of the parameters 	 = (vecl(P")

0;�0; diag(�)0;

vech(Q�)
0)0 and parameter estimation results are given in Tables 1 and 2. These results for the

CCMSV model con�rm the previous results in the literature that the small sample performance

of MCL is better than that of QML; the QML method is less e¢ cient. The e¢ ciency of QML

estimator of the correlation parameter increases as the two series become more correlated

(p = 0:8). When the series are less correlated (p = 0:2), the QML doesn�t estimate the

correlation parameter very accurately: even though the mean is more or less around the true

value, we observe a relatively high variance. Also when the variance of the SV processes are

higher (comparing Exp 1 and Exp 3) the QML estimator gains e¢ ciency in estimating the

autoregressive coe¢ cients, �: The same can be said also for the MCL estimator of � that the

RMSE is smaller when the SV processes have more variance. Comparing Exp 1 and Exp 5,

we can say that when the true value of p is high (p = 0:8), QML and MCL estimates of this

5It should be noted that bhit;b � hit;b is a log-di¤erence, while bpt;b � pt;b is only a di¤erence. Therefore the
latter is divided by pt;b to have the same sense of percentage deviation.
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parameter have less MC standard deviation. It is also noticed that overall the performance

of MCL estimator improves consistently for all the parameters when p increases. When the

variance of SV process is higher, it is seen that the estimation performance of both QML and

MCL estimators for autoregressive parameters increase while there are slight changes in the

RMSE of the correlation estimates. (Comparing Exp 2 and Exp 5, Exp 6 and Exp 8)

Figures 2 and 4 show the kernel density estimates of the deviations of volatility and cor-

relation estimates from the true values. From these �gures we could visually con�rm that

MCL estimators of the volatilities are more e¢ cient compared to QML estimators. The high

variance of the QML correlation estimates can be noticed in the third column; especially in

the experiments where the true correlation parameter value is 0:2. In fact, it is observed that

the QML correlation estimate in Exp 1 is hitting to 0 most of the time. While higher variance

of the SV process errors brings with it an increase in the variance of the estimated volatilities

for both QML and MCL estimators (comparing Exp 1 with Exp 3 and Exp 6 with Exp 8),

when the series are highly correlated both estimators seem to perform better in estimating the

underlying volatilities and correlations (comparing for instance Exp 1, 2, 3 with Exp 5). From

�gures 3 and 5 we arrive to the same conclusions that with lower variance in the stochastic

volatility process, the QML volatility estimates are closer to the MCL volatility estimates. On

the other hand when the true correlation is high, QML correlation estimates are closer to the

MCL correlation estimates. It is seen in Figure 3 that the average absolute deviations of the

QML correlation estimates are concentrated around 1, when p = 0:2. The reason is that the

maximization of the QML log-likelihood is done with respect to the squared correlations (see

Section 2.4.1.) and it seems that the QML estimates for the squared correlations were hitting

to zero most of the time when the true correlation is low. This can also be observed from

Figure 2.

In Table 3, the RMSE of the volatility and correlation estimates of QML and MCL estima-

tors are given. From this table the ine¢ ciency of QML estimation in estimating the correlation

parameter when the true value is low can be seen clearly: when the correlation parameter value

is increased from 0:2 to 0:8, the relative RMSE of QML correlation estimates improves twofolds.

Looking at this table, it can be said that QML performs closest to MCL estimator in estimating

the volatilities in the experiments where the second autoregressive parameter and the variance

of the SV processes are high (Exp 4 and Exp 6). On the other hand, QML estimator of the

correlation parameter performs closer to MCL estimator when the correlation parameter is

high. (Exp 6) Our conclusion from these experiments is that MCL estimation should be pre-

ferred to QML estimation. QML estimation could be used when the series are expected to be

highly correlated, the SV processes behind the series have higher variance and the sample size

is large.

For the experiments with TVCMSV model, the true values for the parameters (except the
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correlation parameter) is chosen from the experiment 1 of CCMSV model. The correlation

parameter values 0:2041 and 1:3333 are chosen such that the correlation between the volatility

adjusted series are 0:2 and 0:8, respectively. The parameter estimation results in Table 4

suggest that QML estimator performs better in estimating the correlation parameter as well

as the underlying correlations with TVCMSV model than with CCMSV model. Also, it is

observed that when the correlations are higher (in Exp 2 relative to Exp 1), the MC standard

deviations and RMSE of all QML estimates are less; while the performance of MCL estimator

seems to be similar in these two experiments. Figure 6 shows the kernel density estimates of

the deviations and absolute deviations of QML and MCL volatility and correlation estimates

from the true values for TVCMSV model. The underlying correlations are estimated with less

variance by both QML and MCL methods when the correlations between the series are high.

Looking at Table 5, we can see that while the performance of QML and MCL in estimating

the underlying volatilities is more or less the same as in corresponding CCMSV experiments

(Exp 1 and Exp 5), the performance QML estimator in estimating the underlying correlations

increased relative to the MCL correlation estimator. Therefore compared to the CCMSV

model, we have less concerns in estimating the TVCMSV model with QML estimator rather

than MCL estimator, while we still suggest that MCL estimator should be used.

For the MSV with diagonal leverage model, all the parameter values are taken from ex-

periment 1 of CCMSV model. For the additional parameters that control for the leverage, we

chose L = diagf�0:2000;�0:2500g and L = diagf�0:5500;�0:6000g. In Table 6, we report
these true values of the parameters as well as the results of the QML and MCL estimations

when the data was generated by an MSV model with diagonal leverage. It is observed that

compared with the Exp 1 of CCMSV model, the performance of QML estimator has decreased

when two more parameters were included to control for the leverage while the performance

of MCL estimator seems to remain similar. When the leverage e¤ect is higher the QML es-

timates of the autoregressive parameters have less standard deviation and RMSE. It is also

observed that, the performance of QML estimator in estimating the correlations of this model

is lower compared to the experiments with the models without leverage. On the other hand

MCL estimator of the leverage parameters, although having less standard deviation, seems

to be deviating from the true values relatively more compared to QML estimator. Some of

these results can be con�rmed visually from Figure 7 where the kernel density estimates of the

deviations and absolute deviations of QML and MCL volatility and correlation estimates from

the true values are plotted. For instance in the third column the kernel density estimates for

the QML correlation estimates have very high variance. In practice this means that for a given

data, the QML estimate of the correlation parameter could possibly have a value far from the

true value. Finally the MAE and RMSE of the volatility and correlation estimates are reported

in Table 7. It is observed that for both estimators, the volatility estimates have higher MAE
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and RMSE compared to the Exp 1 of CCMSV model and they increase with the strength of

leverage. The correlation estimates obtained via QML estimator have 5 to 7 times higher MAE

and RMSE than the MCL estimator. Including leverage e¤ects to the model doesn�t seem to

have that much e¤ect on the performance of the MCL correlation estimator.

In two other MC experiments we consider the MSV model with non-diagonal leverage.

The MCL estimation of this model requires that the assumption that the leverage matrix is

symmetric and positive or negative semi-de�nite. In the �rst experiment (Exp 1) we consider

a true leverage matrix that is symmetric but inde�nite, therefore the restriction of the MCL

estimation is binding. In the second experiment (Exp 2), we consider a leverage matrix that

is symmetric negative de�nite. The true values of the parameters, except the o¤-diagonal

parameter of the leverage matrix, are taken from Exp 1 of the MSV model with diagonal

leverage. The QML estimation does not require symmetricity or positive or negative semi-

de�niteness assumptions although we assume that the leverage matrix is symmetric. Moreover,

in the �rst experiment, we also estimate the same data with QML method imposing the

restrictions on the leverage matrix. The parameter estimation results are given in Table 8 along

with the true parameter values. In the �rst experiment comparing unrestricted and restricted

QML estimation results, we see that restricted QML estimate of the o¤-diagonal parameter

of the leverage matrix is lower and the restricted QML estimates of the leading diagonal of

the leverage matrix are higher compared to the corresponding unrestricted QML estimates.

This result con�rms that the restriction was binding. Both unrestricted and restricted QML

estimates of the correlation parameter are far from the true value. While having uniformly

less bias than the unrestricted QML estimates, MCL estimator does its best to capture the

o¤-diagonal element of the leverage matrix while the MCL estimates for the leading diagonal

of the leverage matrix have more or less the same value as the corresponding unrestricted

QML ones. It is observed that MCL correlation estimator has similar performance in this

experiment compared to Exp 1 of the CCMSV model while the unrestricted QML estimates

of the correlation parameter are far from the true value with higher RMSE compared to Exp

1 of the CCMSV model.

In the second experiment (Exp 2) only the unrestricted QML estimation results are reported

along with the MCL estimation results. When the o¤-diagonal element of the leverage matrix

was decreased (from Exp 1 to Exp 2), in general less bias and RMSE were obtained for the MCL

estimates. As it was in the �rst experiment, the QML estimate of the correlation parameter has

very high standard deviation. Figure 8 reports the kernel density estimates of the deviations

and absolute deviations of unrestricted QML, restricted QML (for Exp. 1 only) and MCL

volatility and correlation estimates from the true values. Both for volatilities or correlations,

the kernel densities corresponding to unrestricted and restricted QML estimators seem to be

very close. For both series the mode of the kernel density estimate corresponding to the MCL
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volatility estimates slightly deviate from zero in the �rst experiment while this deviation is

very small or non-existent in the second experiment. This could be the result of the restriction

imposed or simply due to randomness because in the �rst experiment both unrestricted and

restricted QML estimates of the volatility of second series also seem to be underestimating the

true volatility. In the third column we see that the QML correlation estimates have very high

variance as in Exp. 1 of CCMSV model, while the MCL correlation estimates have much less

variance and are concentrated around the true value of the correlation parameter. When the

o¤-diagonal element of the leverage matrix has less magnitude, the MCL correlation estimates

are more dense around the true value, while the QML correlation estimates seem to have a

similar distribution as in the �rst experiment.

In Table 9, we provide the MAE and RMSE of the volatility and correlation estimates.

Compared to the Exp. 1 of the MSV model with diagonal leverage, in the �rst experiment the

MAE and RMSE of the QML volatility estimates are higher while the MAE and RMSE of the

MCL volatility estimates are slightly lower. In the second experiment, the MAE and RMSE of

the MCL volatility and correlation estimates are lower relative to the corresponding numbers in

Exp 2 of the MSV model with diagonal leverage. Overall, the restricted QML estimator seems

to perform closer to the MCL estimator given that the same restriction is imposed. It is also

observed that the relative MAE and RMSE (QML/MCL) of the correlation estimates increased

from the �rst experiment to second experiment. Finally, it should be noted that both QML

and MCL estimators are more e¢ cient in estimating the volatilities and correlations when the

true value of the o¤-diagonal of the leverage matrix is lower, while the improvement is larger

for the MCL estimator. Also, MCL estimator of the volatilities and correlations in the �rst

experiment with non-diagonal inde�nite leverage matrix perform similar to the �rst experiment

with diagonal leverage matrix in Table 7. Therefore although the restriction imposed in the

MCL method could cause underestimation of the o¤-diagonal element of the leverage matrix

as seen in Table 8, the volatilities and correlations are estimated by MCL with less RMSE

compared to the corresponding QML estimator.

Looking at the results of the experiments with MSV models with (diagonal and non-

diagonal) leverage and considering the high MAE and RMSE of the QML correlation estimates,

we suggest using the MCL method for estimating these models rather than using QML esti-

mation. It could be that the performance of QML estimator improves with higher correlation

in the data or higher variance of the SV processes but it is not expected to be better than the

cases considered in the experiments with CCMSV model.
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4 An Empirical Application

In this section our aim is to �nd empirical evidence supporting the MSV with non-diagonal

leverage model, i.e. the return shocks of one series is correlated with the volatility shocks

of another series. For this estimation, a trivariate series of length 1717 is obtained from the

returns of IBEX 35, FTSE 100 and DAX stock markets for the period between 4/1/2005 and

4/11/2011. The returns are calculated as: 100 x log(Pt=Pt�1). The descriptive statistics of the

data is provided in Table 10. It is observed that the IBEX 35 and DAX returns are skewed right

while FTSE-100 is skewed left. On the other hand, as expected, all series have high kurtosis.

We also report the Box-Ljung statistics for serial correlation to 10 lags for the returns and its

squared and log-squared transformations. Box-Ljung statistic for the return series, yt, suggests

that the data may not be random walks, more likely in the case of FTSE-100. On the other

hand, there is strong evidence of nonlinearity in the squared returns and log-squared returns;

suggesting that there is autocorrelation in these series.

A univariate SV model with leverage is �t for each of the series. The QML and MCL

estimation results for the univariate model is given for each series in Table 11. From the

results of the univariate estimation, we see that the MCL estimates imply more persistent SV

processes compared to QML estimates. MCL estimates of the autoregressive parameter suggest

that these SV processes are even close to random walk. Also it is noted that MCL estimates

of the leverage coe¢ cients, the elements of L; are higher compared to QML estimates.

The estimation of the MSV model with leverage requires the restriction that the L matrix

is symmetric and (positive or negative) semide�nite. This latter restriction is not required by

the QML estimation. However for comparison purposes, we also estimated the model via QML

assuming this restriction. The estimation results for the MSV model with leverage are given

in Tables 12 and 13. If we compare the results of the multivariate estimation with the results

of the univariate estimation in Table 11, we see that the QML estimates of the intercept, of

the autoregressive parameter and of the variance of the SV process are more or less the same

in both cases while the self-leverage of each series, that is the diagonal of the estimated L

matrix, is estimated to be less in magnitude for FTSE-100 and DAX indices compared to the

univariate results.

The MCL estimates of the autoregressive parameters are higher in the univariate estimation

compared to the multivariate estimation while the estimates of the self-leverage of each series

are lower in the multivariate estimation. When comparing the unrestricted QML and MCL

estimation results, we see that the correlation estimates obtained by these two methods are

more or less the same. While the MCL estimates of the autoregressive parameters are higher,

the MCL estimates of elements of the variance matrix of the SV process are lower; this is due

to the fact that the estimation tries to match the unconditional variance in the data and when

the estimates of the autoregressive parameters are high, the variance matrix of the SV process
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is pushed downwards.

When we look at the leverage matrix estimates, we see that MCL estimates of the diagonal

elements of Lmatrix are higher compared to the QML estimates. The MCL leverage parameter

estimates are statistically signi�cant. Moreover, the likelihood ratio test to compare the MCL

estimation results of CCMSV and MSV-NDL models suggest that the data is explained better

by the latter model.6 Figure 9 shows for each series the absolute values of the returns plotted

along with the QML and MCL smooth estimates of the standard deviations. It is observed that

QML overestimated the volatilities of the period after the big volatility shocks. (for example

around t = 1000) Finally, the MCL estimates of the standard deviations follow the absolute

values of the returns closely while QML estimates are experiencing some jumps when volatility

of the data is increasing.

Table 14 shows the results of univariate and multivariate Box-Ljung tests for serial corre-

lation to ten lags on v̂t = Ĥ
�1=2
t P̂ �

�1
" yt, the residuals standardized by the estimated standard

deviations and decorrelated by the estimated constant correlations, and on v̂2t and log v̂
2
t . We

can see that QML method is not able to estimate the underlying volatilities well, as in the

univariate tests the null of no autocorrelation is rejected for the v̂2t and log v̂
2
t . For the MCL

method, when estimating MSV with non-diagonal leverage and constant correlation MSV mod-

els, this null is not rejected at 5% and in some cases at 1% signi�cance levels, with the exception

for DAX for the v̂2t : If we look at the multivariate Box-Ljung test results, we see that for QML

estimation the null is rejected for all v̂2t and log v̂
2
t . Given the no rejections in the univariate

Box-Ljung test results for the MCL method, the rejections of the null for v̂2t and log v̂
2
t in

the multivariate case would mean that the MSV with non-diagonal leverage model and the

constant correlation MSV model may not be able to explain well the underlying correlation

dynamics. This implies that the underlying correlations could be time varying.

5 Conclusions

In this paper, via Monte Carlo (MC) experiments, we compare the performance of Quasi

Maximum Likelihood estimation method of Harvey et al. (1994) and Monte Carlo Likelihood

estimation method of Jungbacker and Koopman (2006) in estimating the parameters as well

as in estimating the underlying volatilities and correlations. With these methods, we estimate

the Constant Correlation MSV model of Harvey et al. (1994), the Time Varying Correlation

MSV model of Jungbacker and Koopman (2006). Moreover, we propose two MSV models

with leverage which are new to the literature. The �rst MSV model with leverage is a direct

generalization of the univariate model in Jungbacker and Koopman (2005). In this model,

each series has its own leverage e¤ect: i.e. the return shocks of series i is correlated with the

6The likelihood ratio test can�t be used with the QML estimation because it is based on approximations.
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volatility shocks of series i while the correlation of the return shocks of series i and the volatility

shocks of series j is zero. Therefore in this model the leverage matrix is diagonal, hence we

refer to it as MSV model with diagonal leverage. In the second MSV model with leverage, we

relax this assumption and let the o¤-diagonals of the leverage matrix to be non-zero. We refer

this model as MSV with non-diagonal leverage.

The estimation of CCMSV model via QML and MCL are discussed in Harvey et al. (1994)

and Jungbacker and Koopman (2006), respectively. Jungbacker and Koopman (2006) also

provides the estimation procedure for the TVCMSV model which follows from a small modi�-

cation of the estimation procedure of CCMSV model. This modi�cation can be applied to the

QML method in order to estimate the TVCMSV model. For the estimation of MSV models

with (diagonal and non-diagonal) leverage, we adopt the transformations discussed in Asai and

McAleer (2006). On the other hand, the transformations of the MSV models with leverage

given in this paper are new to the literature and are based on the univariate transformation in

Jungbacker and Koopman (2006).

We considered eight di¤erent parameter sets for the CCMSV model in our MC experiments.

The results con�rm the previous �ndings in the literature that QML estimator is ine¢ cient

in terms of parameter estimation. It is observed that when the true value of the correlation

parameter is low, the QML estimator of this parameter has very high variance. Therefore,

when estimating a model with real data, if the underlying correlation parameter is low, the

QML estimate will not be very informative. We also observed that the performance of the QML

estimator increases as the series become more correlated and when the SV processes have higher

variance. In estimating the underlying volatilities and correlations, the performance of MCL

estimator was superior to that of QML estimator in all parameter sets, although the QML

estimator was performing closer to MCL estimator in the experiments where the correlations

were higher or SV processes had higher variance.

For the TVCMSV model, we considered two experiments; one with low correlation and

another one with high correlation. It appeared that the performance of the QML estimator

relative to the MCL estimator was much better compared to the experiments of CCMSV

model. With time varying correlations, the QML estimator was able to perform close to the

MCL estimator even when the correlations were low.

For the MSV models with diagonal leverage we considered two experiments, one with low

leverage and another one with high leverage. Our results showed that relative to the experi-

ments with CCMSV, the ine¢ ciency of the QML estimator increased while the performance of

MCL stayed the same when leverage is introduced. Increasing the true values of the leverage

parameters further decreases the performance of the QML estimator. The correlation estimates

of the QML model had very high root mean squared error (�ve to seven times the ones of MCL

estimator). For the MSV model with non-diagonal leverage, we also considered two experi-

23



ments; one where the leverage matrix was inde�nite and another one where it was negative

de�nite. In the �rst experiment, the restriction that "the leverage matrix should be symmetric

and positive or negative semi-de�nite" was binding, while in the latter it was not. Our results

con�rm that in the �rst experiment, even though the MCL method underestimated the o¤-

diagonal leverage parameter, it was able to capture the underlying volatilities and correlations

almost as good as in the case of CCMSV model. On the other hand in both MSV models with

leverage, QML correlation estimates had high bias and high standard deviation such that its

performance was worse than in the corresponding case of CCMSV model.

Based on our results, we conclude that even though in the case of TVCMSV, QML estimator

performs close to MCL estimator, the latter is always preferred. We do not recommend using

QML estimators for the models with leverage. Although QML method can be implemented

much easier than MCL and the estimation time is much less in QML estimation; we suggest

its use if it is expected that the series have high and/or time varying correlation and the

SV processes have higher variance. Given the results in the literature on the ine¢ ciency of

QML estimator in small samples, it would be also a plus if the sample size is large, when

using QML method. On the other hand the implementation of MCL estimation is relatively

more complicated than the QML estimation. Therefore MCL estimation requires much more

time to converge. When the cross-section size is large, the analytical derivatives for the MCL

estimation are harder to obtain and if one would like to use numerical derivatives in this

case, then the derivatives calculated for large state vectors could be very time consuming

and numerically unstable. QML is not as much a¤ected by the large cross-sections or large

sample sizes. Therefore based on our experience, we would suggest using MCL method in

the estimation of MSV models for several series, as for modelling the returns of international

stock market indices, and QML method could be used for the estimation with medium-to-large

number of series from a stock market.

The ine¢ ciency of QML method could be improved partially by employing a nonlinear �lter

instead of Kalman �lter. The latter is a linear �lter and therefore leads to minimum mean

square linear estimators rather than minimum mean squared estimators. Watanabe (1999)

provides a nonlinear �lter for QML estimation for the univariate SV model and extending it

to a multivariate setup would be an interesting topic.

Another point to consider would be to introduce a correlation between the SV process errors

and the stochastic correlation parameter errors in the Tsay (2005) model. The intuition behind

this extra parameter would be that the volatility shocks are correlated with the correlation

shocks, meaning that when the series are more volatile, they are expected to be more correlated.

As we have seen in the recent crisis, the markets tend to move more closely when there are

bad news, while their recoveries from these falls might not be as correlated.
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6 Appendix

Following Jungbacker and Koopman (2006) and Lutkepohl (1996), we obtained the derivatives

for the bivariate MSV model with diagonal leverage needed for deriving the approximating

linear model. For the nondiagonal leverage model, it can be easily modi�ed. On the other

hand, these derivatives are extendable to cases with more than k = 2 series; in the empirical

estimation part these derivatives are used for k = 3 case.

yt = H
1=2
t P �" "t =) "t = P

��1
" H

�1=2
t yt

Ht and P �" as de�ned in (1) and (3). Then using (9) we can write:

dt = P
��1
" H

�1=2
t yt � SQ�

�1
� �2;t

� de�ned as in (10): If we let X = I2 � SL where I2 is a 2x2 identity matrix and �1;t be
the volatilities part of �t; then the loglikelihood for (10) would be given by:

log p(ytjht) = �0:5k log(2�)� 0:5
P

i �1;t;i � 0:5 log(det(P �"XP �0" ))� 0:5d0tX�1dt

Then the �rst derivatives with respect to the state vector �t would be given by:

@lt
@�t

= �0:5

26664
1

1

0

0

37775� 0:5 @d0t@�t
(X�1 +X�10) dt

@d0t
@�t

=
�
@dt
@�t

�0
=

0@ n
�0:5P ��1" diag(H

�1=2
t yt)

o0
�
n
SQ�

�1
�

o0
1A

The second derivatives are obtained from:

@2lt
@�t@�0t

= �0:5
(
@d0t
@�t
(X�1 +X�10) @dt

@�0t
+ [d0t (X

�1 +X�10)
 I4]
@vec

�
@d0t
@�t

�
@�0t

)
where I4 is a 4x4 identity matrix and 
 is a Kronecker product. The last expression in the

equation is equal to:

@vec

�
@d0t
@�t

�
@�0t

= 0:25Z

where Z1;1 =
n
P �

�1
" diag(H

�1=2
t yt)

o
1;1
, Z5;1 =

n
P �

�1
" diag(H

�1=2
t yt)

o
2;1
, and

Z6;2 =
n
P �

�1
" diag(H

�1=2
t yt)

o
2;2
while the rest of the entries are zeros.
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Figure 1: Indices, returns, squared returns (as a proxy for volatilities) and correlations (esti-

mated by a rolling window of 60 days) of FTSE-100 and DAX stock markets between 4/1/2005

- 4/11/2011. Source: Yahoo Finance.
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Figure 2: Kernel density estimates of the deviations of MCL and QML volatility and correlation

estimates from the true ones, for the CCMSV model. Experiments 1 to 4.
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Figure 3: Kernel density estimates of the absolute deviations of MCL and QML volatility and

correlation estimates from the true ones, for the CCMSV model. Experiments 1 to 4.
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Figure 4: Kernel density estimates of the deviations of MCL and QML volatility and correlation

estimates from the true ones, for the CCMSV model. Experiments 5 to 8.
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Figure 5: Kernel density estimates of the absolute deviations of MCL and QML volatility and

correlation estimates from the true ones, for the CCMSV model. Experiments 5 to 8.
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Figure 6: Kernel density estimates of the deviations and absolute deviations of MCL and QML

volatility and correlation estimates from the true ones, for the TVCMSV model.
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Figure 7: Kernel density estimates of the deviations and absolute deviations of MCL and

QML volatility and correlation estimates from the true ones, for the MSV model with diagonal

leverage.
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Figure 8: Kernel density estimates of the deviations and absolute deviations of MCL and QML

volatility and correlation estimates from the true ones, for the MSV model with non-diagonal

leverage. Exp 1: true leverage matrix is inde�nite. Exp 2: true leverage matrix is negative

de�nite.
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Figure 9: Absolute values of the returns and the MCL and QML smooth estimates of the

standard deviations for IBEX 35, FTSE 100 and DAX stock markets between 4/1/2005 -

4/11/2011. Data source: Yahoo Finance

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

IB
E

X
 3

5

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

FT
S

E
 1

00

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

D
A

X

| y
t
 |

MCL
QML

38



Table 1: The parameter estimation results of the simulations where the data is generated by

a CC-MSV model and estimated via QML and MCL methods.
Estim.nParam. fP"g21 �11 �21 �11 �22 fQ�g11 fQ�g21 fQ�g22
Exp 1 - True 0.2000 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800

QML 0.1509 -0.1368 -0.2770 0.8646 0.8948 0.2373 0.0539 0.1824

(0.1751) (0.1092) (0.4187) (0.0971) (0.1488) (0.2731) (0.0601) (0.2454)

[0.1819] [0.1153] [0.4437] [0.1033] [0.1587] [0.2867] [0.0617] [0.2659]

MCL 0.1943 -0.1197 -0.1673 0.8811 0.9354 0.1649 0.0390 0.0862

(0.0444) (0.0617) (0.0965) (0.0499) (0.0350) (0.0695) (0.0231) (0.0363)

[0.0447] [0.0647] [0.1034] [0.0534] [0.0380] [0.0711] [0.0231] [0.0368]

Exp 2 - True 0.2000 -0.1000 -0.1300 0.9000 0.9800 0.1500 0.0400 0.0800

QML 0.1919 -0.1821 -0.2573 0.8241 0.9604 0.2593 0.0380 0.1015

(0.1858) (0.2093) (0.5369) (0.1835) (0.0798) (0.3124) (0.0532) (0.1333)

[0.1860] [0.2248] [0.5518] [0.1986] [0.0821] [0.3310] [0.0533] [0.1350]

MCL 0.1957 -0.1376 -0.1822 0.8649 0.9716 0.1797 0.0392 0.0809

(0.0427) (0.0727) (0.1018) (0.0641) (0.0157) (0.0782) (0.0288) (0.0279)

[0.0429] [0.0819] [0.1144] [0.0731] [0.0178] [0.0836] [0.0288] [0.0279]

Exp 3 - True 0.2000 -0.1000 -0.1300 0.9000 0.9500 0.4000 0.1500 0.3500

QML 0.1880 -0.1265 -0.1526 0.8707 0.9404 0.4954 0.1618 0.3649

(0.1833) (0.0790) (0.0647) (0.0577) (0.0214) (0.2785) (0.0732) (0.1333)

[0.1837] [0.0833] [0.0686] [0.0647] [0.0234] [0.2944] [0.0742] [0.1341]

MCL 0.1899 -0.1119 -0.1402 0.8867 0.9459 0.3974 0.1491 0.3325

(0.0428) (0.0536) (0.0499) (0.0346) (0.0171) (0.0881) (0.0498) (0.0850)

[0.0440] [0.0549] [0.0510] [0.0370] [0.0179] [0.0882] [0.0498] [0.0868]

Exp 4 - True 0.2000 -0.1000 -0.1300 0.9000 0.9800 0.4000 0.1500 0.3500

QML 0.1876 -0.1322 -0.1873 0.8676 0.9712 0.5114 0.1554 0.3439

(0.1940) (0.0832) (0.0814) (0.0598) (0.0111) (0.2813) (0.0651) (0.0929)

[0.1944] [0.0892] [0.0995] [0.0680] [0.0142] [0.3025] [0.0653] [0.0931]

MCL 0.1918 -0.1150 -0.1727 0.8852 0.9733 0.4054 0.1464 0.3314

(0.0410) (0.0521) (0.0760) (0.0334) (0.0105) (0.0841) (0.0447) (0.0750)

[0.0418] [0.0542] [0.0872] [0.0366] [0.0124] [0.0842] [0.0449] [0.0772]

Note: For each experiment, the true parameter values are reported in the �rst row. Then for each

estimation method, MC mean, standard deviation (in parantheses) and root mean squared error (in

square brackets) of the parameter estimates are reported, respectively. Experiments 1-4.
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Table 2: The parameter estimation results of the simulations where the data is generated by

a CC-MSV model and estimated via QML and MCL methods.
Estim.nParam. fP"g21 �11 �21 �11 �22 fQ�g11 fQ�g21 fQ�g22
Exp 5 - True 0.8000 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800

QML 0.8034 -0.1613 -0.2117 0.8363 0.9197 0.2747 0.0567 0.1230

(0.0365) (0.1398) (0.2018) (0.1377) (0.0660) (0.3111) (0.0568) (0.1578)

[0.0366] [0.1527] [0.2177] [0.1517] [0.0726] [0.3352] [0.0593] [0.1635]

MCL 0.7961 -0.1130 -0.1692 0.8854 0.9349 0.1559 0.0477 0.0841

(0.0160) (0.0476) (0.0880) (0.0384) (0.0333) (0.0500) (0.0227) (0.0326)

[0.0165] [0.0494] [0.0964] [0.0411] [0.0366] [0.0503] [0.0240] [0.0328]

Exp 6 - True 0.8000 -0.1000 -0.1300 0.9000 0.9800 0.4000 0.1500 0.3500

QML 0.8047 -0.1304 -0.1747 0.8714 0.9725 0.4666 0.1504 0.3383

(0.0376) (0.0763) (0.0875) (0.0622) (0.0132) (0.2286) (0.0852) (0.0997)

[0.0379] [0.0821] [0.0983] [0.0684] [0.0152] [0.2381] [0.0852] [0.1004]

MCL 0.7893 -0.1107 -0.1549 0.8906 0.9756 0.3703 0.1482 0.3250

(0.0183) (0.0403) (0.0779) (0.0285) (0.0117) (0.0821) (0.0608) (0.0655)

[0.0212] [0.0417] [0.0818] [0.0300] [0.0125] [0.0873] [0.0608] [0.0701]

Exp 7 - True 0.8000 -0.1000 -0.1300 0.9000 0.9500 0.4000 0.1500 0.3500

QML 0.8097 -0.1171 -0.1726 0.8822 0.9353 0.4297 0.1439 0.3852

(0.0430) (0.0561) (0.0970) (0.0505) (0.0307) (0.2127) (0.1008) (0.1633)

[0.0441] [0.0586] [0.1059] [0.0536] [0.0340] [0.2147] [0.1010] [0.1671]

MCL 0.7901 -0.1042 -0.1412 0.8978 0.9469 0.3520 0.1422 0.3193

(0.0211) (0.0373) (0.0543) (0.0247) (0.0175) (0.0763) (0.0560) (0.0725)

[0.0233] [0.0376] [0.0555] [0.0248] [0.0178] [0.0901] [0.0565] [0.0787]

Exp 8 - True 0.8000 -0.1000 -0.1300 0.9000 0.9800 0.1500 0.0400 0.0800

QML 0.8030 -0.1294 -0.2093 0.8650 0.9676 0.2212 0.0525 0.1035

(0.0424) (0.1174) (0.1583) (0.1079) (0.0245) (0.2554) (0.0468) (0.0662)

[0.0426] [0.1210] [0.1771] [0.1134] [0.0275] [0.2652] [0.0484] [0.0702]

MCL 0.7971 -0.1097 -0.1693 0.8854 0.9737 0.1469 0.0440 0.0826

(0.0201) (0.0429) (0.0765) (0.0392) (0.0122) (0.0444) (0.0248) (0.0233)

[0.0203] [0.0440] [0.0860] [0.0419] [0.0137] [0.0445] [0.0251] [0.0235]

Note: For each experiment, the true parameter values are reported in the �rst row. Then for each

estimation method, MC mean, standard deviation (in parantheses) and root mean squared error (in

square brackets) of the parameter estimates are reported, respectively. Experiments 5-8.

40



Table 3: Mean absolute error (MAE) and root mean squared error (RMSE) of the QML and

MCL volatility and correlation estimates for CC-MSV model
MAE Method j�jh1t j�jh2t j�jp RMSE Method �h1t �h2t �p

Exp 1 QML 0.5304 0.4748 0.8122 Exp 1 QML 0.6409 0.5459 0.9095

MCL 0.4482 0.3885 0.1694 MCL 0.5407 0.4951 0.2235

QML/MCL 1.1834 1.2222 4.7945 QML/MCL 1.1853 1.1026 4.0694

Exp2 QML 0.5335 0.5076 0.8245 Exp 2 QML 0.6334 0.6336 0.9300

MCL 0.4539 0.4236 0.1668 MCL 0.5611 0.4676 0.2145

QML/MCL 1.1753 1.1983 4.9430 QML/MCL 1.1288 1.3550 4.3357

Exp 3 QML 0.6873 0.6856 0.8349 Exp 3 QML 0.9383 0.8748 0.9185

MCL 0.6177 0.6058 0.1695 MCL 0.8885 0.8137 0.2200

QML/MCL 1.1126 1.1317 4.9256 QML/MCL 1.0560 1.0751 4.1750

Exp 4 QML 0.6912 0.7417 0.8905 Exp 4 QML 1.0889 0.8983 0.9720

MCL 0.6168 0.6646 0.1583 MCL 1.0506 0.8286 0.2090

QML/MCL 1.1206 1.1160 5.6254 QML/MCL 1.0364 1.0842 4.6507

Exp 5 QML 0.5305 0.4679 0.0365 Exp 5 QML 0.6829 0.6164 0.0457

MCL 0.4212 0.3610 0.0161 MCL 0.5038 0.5015 0.0206

QML/MCL 1.2595 1.2961 2.2671 QML/MCL 1.3555 1.2291 2.2182

Exp 6 QML 0.7040 0.7652 0.0378 Exp 6 QML 0.8746 0.9181 0.0474

MCL 0.5943 0.6774 0.0202 MCL 0.7893 0.7105 0.0265

QML/MCL 1.1846 1.1296 1.8713 QML/MCL 1.1081 1.2922 1.7877

Exp 7 QML 0.6967 0.6905 0.0438 Exp 7 QML 0.9336 0.9068 0.0551

MCL 0.5838 0.5849 0.0228 MCL 0.8309 0.8759 0.0291

QML/MCL 1.1934 1.1805 1.9211 QML/MCL 1.1236 1.0353 2.1724

Exp 8 QML 0.5194 0.5146 0.0421 Exp 8 QML 0.5563 0.8516 0.0532

MCL 0.4223 0.4170 0.0201 MCL 0.5217 0.6874 0.0254

QML/MCL 1.2299 1.2341 2.0945 QML/MCL 1.0663 1.2388 2.0985
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Table 4: The parameter estimation results of the simulations where the data is generated by

a TVC-MSV model and estimated via QML and MCL methods.
Estim.nParam. fDg21 �11 �21 �11 �22 fQ�g11 fQ�g21 fQ�g22
Exp 1 - True 0.2041 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800

QML 0.2034 -0.1852 -0.2068 0.8205 0.9178 0.2742 0.0648 0.0897

(0.0439) (0.2449) (0.3879) (0.2109) (0.1540) (0.3603) (0.0815) (0.1079)

[0.0439] [0.2593] [0.3954] [0.2254] [0.1574] [0.3811] [0.0852] [0.1083]

MCL 0.2039 -0.1322 -0.1691 0.8684 0.9352 0.1783 0.0501 0.0903

(0.0174) (0.0703) (0.0759) (0.0670) (0.0286) (0.0817) (0.0315) (0.0348)

[0.0174] [0.0773] [0.0854] [0.0741] [0.0322] [0.0865] [0.0330] [0.0363]

Exp 2 - True 1.3333 -0.1000 -0.1300 0.9000 0.9500 0.1500 0.0400 0.0800

QML 1.3275 -0.1541 -0.2205 0.8459 0.9151 0.2712 0.0597 0.0984

(0.0250) (0.1413) (0.3675) (0.1315) (0.1338) (0.3438) (0.0774) (0.0945)

[0.0257] [0.1513] [0.3785] [0.1421] [0.1383] [0.3646] [0.0798] [0.0962]

MCL 1.3359 -0.1358 -0.1677 0.8623 0.9358 0.1759 0.0441 0.0898

(0.0164) (0.0829) (0.0809) (0.0780) (0.0307) (0.0757) (0.0286) (0.0392)

[0.0166] [0.0903] [0.0892] [0.0867] [0.0338] [0.0800] [0.0289] [0.0404]

Note: For each experiment, the true parameter values are reported in the �rst row. Then for each

estimation method, MC mean, standard deviation (in paranthesis) and root mean squared error (in

square brackets) of the parameter estimates are reported, respectively.

Table 5: Mean absolute error (MAE) and root mean squared error (RMSE) of the QML and

MCL volatility and correlation estimates for the TVCMSV model
MAE Method j�jh1t j�jh2t j�jpt RMSE Method �h1t �h2t �pt

Exp 1 QML 0.5297 0.4679 0.2938 Exp 1 QML 0.6045 0.7038 0.4206

MCL 0.4518 0.3789 0.2251 MCL 0.5176 0.4678 0.3058

QML/MCL 1.1724 1.2349 1.3052 QML/MCL 1.1679 1.5044 1.3754

Exp 2 QML 0.5263 0.4502 0.0425 Exp 2 QML 0.6834 0.5564 0.0752

MCL 0.4473 0.3788 0.0355 MCL 0.5148 0.5185 0.0628

QML/MCL 1.1766 1.1885 1.1972 QML/MCL 1.3275 1.0730 1.1975
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Table 6: The parameter estimation results of the simulations where the data is generated by

an MSV model with diagonal leverage and estimated via QML and MCL methods.
Estim.nParam. fP"g21 �11 �21 �11 �22 L11 L22 fQ�g11 fQ�g21 fQ�g22
Exp 1 - True 0.2000 -0.1000 -0.1300 0.9000 0.9500 -0.2000 -0.2500 0.1500 0.0400 0.0800

QML 0.1289 -0.1650 -0.2379 0.8431 0.9093 -0.1543 -0.2431 0.2529 0.0475 0.1306

(0.2438) (0.1745) (0.3002) (0.1472) (0.1125) (0.2192) (0.3691) (0.2728) (0.0578) (0.1547)

[0.2539] [0.1862] [0.3190] [0.1579] [0.1197] [0.2240] [0.3692] [0.2916] [0.0583] [0.1628]

MCL 0.1935 -0.1272 -0.1712 0.8760 0.9350 -0.1335 -0.1822 0.1650 0.0413 0.0842

(0.0499) (0.0603) (0.0864) (0.0508) (0.0322) (0.1526) (0.2087) (0.0681) (0.0277) (0.0347)

[0.0503] [0.0662] [0.0957] [0.0562] [0.0355] [0.1665] [0.2195] [0.0697] [0.0277] [0.0349]

Exp 2 - True 0.2000 -0.1000 -0.1300 0.9000 0.9500 -0.5500 -0.6000 0.1500 0.0400 0.0800

QML 0.0751 -0.1798 -0.2235 0.8274 0.9162 -0.3822 -0.5342 0.2520 0.0404 0.1071

(0.2748) (0.1595) (0.2049) (0.1285) (0.0700) (0.2371) (0.2939) (0.2723) (0.0504) (0.1214)

[0.3018] [0.1784] [0.2252] [0.1476] [0.0777] [0.2905] [0.3012] [0.2908] [0.0504] [0.1243]

MCL 0.2029 -0.1648 -0.1976 0.8452 0.9273 -0.2952 -0.4543 0.2033 0.0446 0.0879

(0.0416) (0.0696) (0.0958) (0.0616) (0.0373) (0.1380) (0.1675) (0.0733) (0.0276) (0.0329)

(0.0417) [0.0951] [0.1173] [0.0824] [0.0437] [0.2898] (0.2220) (0.0906) (0.0280) (0.0338)

Note: For each experiment, the true parameter values are reported in the �rst row. Then for each

estimation method, MC mean, standard deviation (in paranthesis) root mean squared error (in

square brackets) of the parameter estimates are reported, respectively.

Table 7: Mean absolute error (MAE) and root mean squared error (RMSE) of the QML and

MCL volatility and correlation estimates for the MSV model with diagonal leverage
MAE Method j�jh1t j�jh2t j�jp RMSE Method �h1t �h2t �p

Exp 1 QML 0.5403 0.4903 1.0304 Exp 1 QML 0.6821 0.6206 1.2695

MCL 0.4953 0.4304 0.1990 MCL 0.6208 0.5414 0.2515

QML/MCL 1.0909 1.1392 5.1779 QML/MCL 1.0987 1.1463 5.0477

Exp 2 QML 0.5598 0.5125 1.2375 Exp 2 QML 0.7054 0.6480 1.5090

MCL 0.5747 0.4729 0.1668 MCL 0.7231 0.5976 0.2085

QML/MCL 0.9741 1.0837 7.4191 QML/MCL 0.9755 1.0843 7.2374
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Table 9: Mean absolute error (MAE) and root mean squared error (RMSE) of the QML and

MCL volatility and correlation estimates for the MSV model with non-diagonal leverage.
MAE Method j�jh1t j�jh2t j�jp RMSE Method �h1t �h2t �p

Exp 1 QML-u 0.5641 0.5245 1.0643 Exp 1 QML-u 0.7125 0.6760 1.2905

QML-r 0.5587 0.5137 0.8786 QML-r 0.7047 0.6576 1.0945

MCL 0.4900 0.4119 0.1944 MCL 0.6164 0.5206 0.2385

QML-u/MCL 1.1512 1.0210 5.4748 QML-u/MCL 1.1559 1.2985 5.4109

QML-r/MCL 1.1402 1.2471 4.5195 QML-r/MCL 1.1433 1.2632 4.5891

Exp 2 QML-u 0.5390 0.5008 1.0504 Exp 2 QML-u 0.6787 0.6406 1.2250

MCL 0.4767 0.4053 0.1468 MCL 0.5979 0.5098 0.1860

QML-u/MCL 1.1307 1.2356 7.1553 QML-u/MCL 1.1351 1.2566 6.5860

Note: In Experiment 1 the leverage matrix, L, is inde�nite while in Experiment 2 it is (negative)

de�nite.

Table 10: Descriptive statistics of the returns
Statistics n Series IBEX-35 FTSE-100 DAX

Mean -0.0034 0.0076 0.0192

SD 1.5981 1.3667 1.5163

Skewness 0.1504 -0.1385 0.0346

Kurtosis 10.7492 10.4146 9.7788

Maximum 13.4836 9.3842 10.7975

Minimum -9.5859 -9.2646 -7.4335

Box-Ljung test for autocorrelation, p_values

Q(10), yt 0.0179** 0.0000*** 0.0152**

Q(10), y2t 0.0000*** 0.0000*** 0.0000***

Q(10), log y2t 0.0000*** 0.0000*** 0.0000***

Note: *Signi�cant at 10%, **Signi�cant at 5%, ***Signi�cant at 1%

Table 11: The empirical estimation results for the univariate SV model with leverage.
Estim. Series � � L Q� Log-like AIC BIC

QML IBEX 35 0.0137 0.9636 -0.5262 0.0693 -3890.6 7789.2 7811.0

(0.0012) (0.0055) (0.0944) (0.0080)

FTSE 100 0.0003 0.9625 -0.4964 0.0747 -3911.7 7831.4 7853.1

(0.0038) (0.0057) (0.0457) (0.0066)

DAX 0.0202 0.9480 -0.6653 0.0801 -3902.8 7813.5 7835.3

(0.0049) (0.0076) (0.0974) (0.0080)

MCL IBEX 35 0.0025 0.9957 -0.6574 0.0049 -2456.7 4921.4 4943.2

(0.0002) (0.0012) (0.0007) (0.0002)

FTSE 100 -0.0001 0.9965 -0.6022 0.0038 -2149.1 4306.2 4328.0

(0.0001) (0.0014) (0.0312) (0.0015)

DAX 0.0026 0.9942 -0.8328 0.0044 -2412.3 4832.5 4854.3

(0.0002) (0.0014) (0.0113) (0.0003)
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