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Abstract

In an important model of growth and pollution proposed by Stokey [Int.
Econ. Rev. 39 (1998) 1] neither the rate of economic growth nor the rate
of growth of emissions depends on the time preference of the representative
agent, which seems somewhat paradoxical. To resolve this paradox, we in-
troduce into Stokey’s model the assumption of dual-rate discounting, prove
the existence of a sustainable balanced growth optimal path, and show that
the growth rates of output and emissions are increasing in the proportion
between the consumption and the environmental discount factors of the rep-
resentative agent.
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1 Introduction
In an important paper by Stokey (1998), a series of simple growth and pollu-
tion models to investigate the links between the limits to growth and industrial
pollution was presented. In Stokey’s analysis an optimizing representative agent
determines saving and abatement decisions.

By adopting a CRRA utility function, she shows that along the balanced
growth optimal path emissions fall if and only if the elasticity of marginal util-
ity with respect to consumption exceeds one. Neither the rate of economic growth
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nor the rate of growth of emissions depends on the time preference of the represen-
tative agent. Even the conditions of sustainability do not depend on the discount
factor.

This property of Stokey’s model is somewhat paradoxical in the light of the
fact that discounting plays a crucial role in the economic-environmental model-
ing with long time horizons, and the present debate on discounting environmental
benefits and costs is centered on the inconsistency of discounting with the philos-
ophy of sustainability. To resolve this paradox, we introduce into Stokey’s model
the assumption of dual-rate discounting as applied by Yang (2003).

According to the dual-rate discounting approach people have two rates of pure
time preference – a consumption discount rate used to discount utility from goods
consumption and an environmental discount rate used to discount utility from en-
vironmental quality (or disutility from pollution). The environmental discount
rate is supposed to be lower than the consumption one. The idea of an environ-
mental discount rate that is different from the consumption discount rate is also
explored by Hasselman et al. (1997), Horowitz (2002) and Almansa Sáez and
Calatrava Requena (2007).

It should be said that some authors (Tol (2005) and Weikard and Zhu (2005))
see no reason why rates of pure time preference should be different for differ-
ent types of goods. They try to show formally that for purposes of cost-benefit
analysis dual-rate discounting and the classical approach are equivalent.

We are not going to join the debate, but notice that in a framework of a growth
model with a representative agents the environmental discount rate reflects social
tastes, whereas the consumption discount rate reflects personal tastes. For ethical
reasons, people may really prefer the use of lower discount rates to evaluate soci-
etal goals and objectives, even while possessing a personal high time preference
rate. There is some empirical evidence indicating that the consumption discount
rate and the environmental discount rate are different. For example, Lumeley
(1997) reveals that Philippines upland farmers may be adopting soil conservation
for ethical reasons in spite of their high individual discount rates. Taylor et al.
(2003) found out that implicit discount rates are different for forest benefits of dis-
tinct nature, namely timber and recreation. Using an experimental methodology,
Gintis (2000) and Farrugia (2010) arrive at the conclusion that the intertemporal
preferences of individuals vary between private and environmental projects.

We consider a discrete time version of Stokey’s model with dual-rate dis-
counting. We prove the existence of a sustainable balanced growth optimal path
and show that the long-run rate of economic growth is increasing in the propor-
tion between the consumption and the environmental discount factors, whereas
the rate at which pollution decreases is decreasing in this proportion.



2 The model
Potential output Ft at time t is given by the Cobb-Douglas production function:

Ft = AtKα
t , 0 < α < 1,

where Kt is the stock of fully depreciating capital and At the total factor produc-
tivity growing at an exogenously given rate g > 0:

At = (1 + g)tA0.

Potential output Ft and final output Yt available for consumption and investment
are related by

Yt = ztFt, 0 ≤ zt ≤ 1, (1)

where zt is the technique of production. It is determined endogenously. Aggregate
emissions Xt are given by

Xt = zρt Ft, ρ > 1. (2)

Output Yt is available for consumption Ct and the stock of capital at next time:

Ct + Kt+1 = Yt.

The objective function of the central planner is

∞∑
t=0

[
βt

1u(Ct) − βt
2v(Xt)

]
,

where
β2 > β1,

v(X) := Xγ/γ, γ > 1;

u(C) := C1−σ/(1 − σ), 0 < σ , 1.

It is convenient to eliminate zt and Ft. To do this we can rewrite (1)-(2) as
follows:

Xt = Φ(Yt,Kt, At),

Yt ≤ AtKα
t ,

where
Φ(Y,K, A) := YρKα(1−ρ)A1−ρ.

Thus, given K0 > 0, the social planner’s problem is

max
∞∑

t=0

[
βt

1u(Ct) − βt
2v(Xt)

]
, (3)



s.t.
Kt+1 + Ct = Yt, t = 0, 1, ..., (4)

Xt = Φ(Yt,Kt, At), t = 0, 1, ..., (5)

Yt ≤ AtKα
t , t = 0, 1, .... (6)

Let (K∗t ,Y
∗
t ,C

∗
t , X

∗
t )∞t=0 be a solution to the problem (3)-(6) at K0 = K∗0 . This

solution is called a balanced optimal path if for some gK > −1 and gX > −1 and
for all t = 0, 1, ...,

K∗t+1 = (1 + gK)K∗t , Y∗t+1 = (1 + gK)Y∗t , C∗t+1 = (1 + gK)C∗t ,
X∗t+1 = (1 + gX)X∗t . (7)

If, moreover, gK > 0 and gX ≤ 0, it is called a sustainable balanced optimal path.
Let

κ1 := γ(ρ − 1) > 0, κ2 := γ + σ − 1 > 0.

Now we can prove our main result. The following theorem reads that under
some conditions on the relationship between the two discount factors a sustainable
balanced optimal path exists, the long-run rate of economic growth is increasing in
the proportion between the consumption and the environmental discount factors,
and the rate at which emissions decrease is decreasing in this proportion.

Theorem. Suppose that

β2/β1 < (1 + g)κ1 .

If either
0 < σ < 1 and (1 + g)κ1 ≤ (β2/β1)

γ[ρ(1−α)+α]
1−σ ,

or
σ > 1,

then for any sufficiently high A0 a sustainable balanced optimal path exists. On
this path,

gK = (β1/β2)
1

(1−α)κ1+κ2 (1 + g)
κ1

(1−α)κ1+κ2 − 1,

gX = (β1/β2)
ρ−α(ρ−1)

(1−α)κ1+κ2 (1 + g)
κ1−(ρ−1)κ2
(1−α)κ1+κ2 − 1.

Proof. For a sustainable balanced optimal path, constraint (6) is not binding.
Therefore, to prove the theorem it is sufficient to show that for any A0 > 0 there is
a solution (K∗t ,Y

∗
t ,C

∗
t , X

∗
t )∞t=0 to the problem (3)-(5) (at K0 = K∗0) which satisfies



(7) for some gK > 0 and gX ≤ 0 and check that for sufficiently high A0 this
solution satisfies (6).

Let (K∗t ,Y
∗
t ,C

∗
t , X

∗
t )∞t=0 be a solution to the problem (3)-(5) at K0 = K∗0 and let

λt and µt be the costate variables corresponding to constraints (4) and (5) respec-
tively. Necessary first-order conditions for this problem are:

βt
1u′(C∗t ) = λt,

βt
2v′(X∗t ) = µt,

µtΦK(Y∗t ,K
∗
t , At) = −λt−1,

µtΦY (Y∗t ,K
∗
t , At) = λt.

More specifically they can be rewritten as follows:

βt
1(C∗t )−σ = λt, (8)

βt
2(X∗t )γ−1 = µt, (9)

µtα(1 − ρ)(Y∗t )ρA1−ρ
t (K∗t )α(1−ρ)−1 = −λt−1, (10)

µtρ(Y∗t )ρ−1A1−ρ
t (K∗t )α(1−ρ) = λt. (11)

If (K∗t ,Y
∗
t ,C

∗
t , X

∗
t )∞t=0 satisfies (7), then there are gλ > −1 and gµ > −1 such that,

for all t = 0, 1, ...,
λt+1 = (1 + gλ)λt, µt+1 = (1 + gµ)µt. (12)

It is not difficult to check that

1 + gλ = β1(1 + gK)−σ,

1 + gµ = β2(1 + gX)γ−1, (13)

1 + gλ = (1 + gµ)(1 + gK)(1−α)(ρ−1)(1 + g)1−ρ,

1 + gX = (1 + gK)ρ+α(1−ρ)(1 + g)1−ρ.

It follows that
1 + gλ
1 + gµ

=
1 + gX

1 + gK
(14)

and
(β1/β2)(1 + g)κ1 = (1 + gK)(1−α)κ1+κ2 . (15)

Therefore
gK > 0 ⇔ (β2/β1)1/κ1 < (1 + g).



Let us now prove that if 0 < σ < 1, then

gX ≤ 0 ⇔ 1 + g ≤ (β2/β1)
ρ−α(ρ−1)

(ρ−1)(1−σ) , (16)

and if σ > 1, then
gX ≤ 0 ∀g > 0. (17)

Indeed, it follows from (15) that

1 + gK = (β1/β2)
1

(1−α)κ1+κ2 (1 + g)
κ1

(1−α)κ1+κ2 .

Therefore,
1 + gX = (β1/β2)

ρ−α(ρ−1)
(1−α)κ1+κ2 (1 + g)

[ρ−α(ρ−1)]κ1
(1−α)κ1+κ2

+1−ρ

= (β1/β2)
ρ−α(ρ−1)

(1−α)κ1+κ2 (1 + g)
κ1−(ρ−1)κ2
(1−α)κ1+κ2 .

Hence,

gX ≤ 0 ⇔ (β2/β1)ρ−α(ρ−1) ≥ (1 + g)κ1−(ρ−1)κ2 = (1 + g)(ρ−1)(1−σ).

Since β2/β1 > 1, it follows that σ > 1 implies (17) and 0 < σ < 1 implies (16).
We can summarize by formulating
Lemma 1. If 0 < σ < 1, then

gK > 1 and gX ≤ 0 ⇔ (β2/β1) < (1 + g)κ1 ≤ (β2/β1)
γ[ρ(1−α)+α]

1−σ .

If σ > 1, then

gK > 1 and gX ≤ 0 ⇔ (β2/β1) < (1 + g)κ1 .

Now we can prove
Lemma 2. If gX ≤ 0, then any sequence (K∗t ,Y

∗
t ,C

∗
t , X

∗
t )∞t=0 satisfying (7)-(11)

is a solution to the problem (3)-(5) at K0 = K∗0 .
Proof of Lemma 2. Let (Kt,Yt,Ct, Xt)∞t=0 be a sequence satisfying (4)-(5) and

K0 = K∗0 . We claim that

∞∑
t=0

[
βt

1u(C∗t ) − βt
2v(X∗t )

]
≥

∞∑
t=0

[
βt

1u(Ct) − βt
2v(Xt)

]
.

We have for all t = 0, 1, . . .

βt
1u(C∗t ) − λtC∗t ≥ β

t
1u(Ct) − λtCt,

µtX∗t − β
t
2v(X∗t ) ≥ µtXt − β

t
2v(Xt),



λtY∗t − λt−1K∗t − µtΦ(Y∗t ,K
∗
t , At) ≥ λtYt − λt−1Kt − µtΦ(Yt,Kt, At).

Therefore for any T ,

T∑
t=0

[
βt

1u(C∗t ) − βt
2v(X∗t )

]
−

T∑
t=0

[
βt

1u(Ct) − βt
2v(Xt)

]
=

T∑
t=0

[
βt

1u(C∗t ) − βt
1u(Ct)

]
−

T∑
t=0

[
βt

2v(X∗t ) − βt
2v(Xt)

]
≥

T∑
t=0

(λtC∗t − λtCt) +

T∑
t=0

(µtXt − µtX∗t )

≥

T∑
t=0

[λt(Y∗t − K∗t+1) − λt(Yt − Kt+1)]

+

T∑
t=0

[µtΦ(Yt,Kt, At) − µtΦ(Y∗t ,K
∗
t , At)]

≥

T∑
t=0

[λtY∗t − λt−1K∗t − µtΦ(Y∗t ,K
∗
t , At)]

−

T∑
t=0

[λtYt − λt−1Kt − µtΦ(Yt,Kt, At)] − λT K∗T+1 + λT KT+1

≥ −λT K∗T+1 + λT KT+1 ≥ −λT K∗T+1.

To complete the proof it is sufficient to notice that from (13), (14) and gX ≤ 0
we obtain

(1 + gλ)(1 + gK) = (1 + gX)(1 + gµ) = β2(1 + gX)γ < 1

and hence λT K∗T+1 → 0 as T → ∞. �
Suppose that A0 > 0 is given. On the one hand, it is clear that if se-

quences (K∗t ,Y
∗
t ,C

∗
t , X

∗
t )∞t=0, (λt)∞t=0 and (µt)∞t=0 satisfy (7), (8)-(11) and (12), then

(K∗0 ,Y
∗
0 ,C

∗
0, X

∗
0, λ0, µ0) is a solution to the following system of equations:

X = A1−ρ
0 YρKα(1−ρ), (18)

C = Y − (1 + gK)K, (19)

λ = C−σ, (20)



µ = Xγ−1, (21)

µα(1 − ρ)A1−ρ
0 YρKα(1−ρ)−1 = −λ/(1 + gλ), (22)

µρA1−ρ
0 Yρ−1Kα(1−ρ) = λ. (23)

On the other hand, if (K∗0 ,Y
∗
0 ,C

∗
0, X

∗
0, λ0, µ0) is a solution to the system of equa-

tions (18)-(23) and the sequences (K∗t ,Y
∗
t ,C

∗
t , X

∗
t )∞t=0, (λt)∞t=0 and (µt)∞t=0 are given

by (7) and (12), then these sequences satisfy (8)-(11) and hence (K∗t ,Y
∗
t ,C

∗
t , X

∗
t )∞t=0

is a solution to the problem (3)-(5) at K0 = K∗0 .
Let

η :=
(1 + gλ)α(ρ − 1)

ρ
,

ξ := 1 − (1 + gK)η.

Lemma 3. If (K∗0 ,Y
∗
0 ,C

∗
0, X

∗
0, λ0, µ0) is the solution to the system of equations

(18)-(23), then

Y∗0 =
(
(ρξσ)1/γηα(1−ρ)

) 1
(1−σ)/γ−ρ+α(ρ−1) A

1−ρ
(1−σ)/γ−ρ+α(ρ−1)

0 ,

K∗0 = ηY∗0 .

Proof. It follows from (20)-(23) that

ρ[α(ρ − 1)]−1Y−1K = 1 + gλ

and hence
K = ηY.

From (18) we obtain
X = ηα(1−ρ)A1−ρ

0 Yρ+α(1−ρ) (24)

and from (19)
C = ξY,

We can rewrite (22) as

ξ−σY−σ = ρA1−ρ
0 Xγ−1Yρ−1Kα(1−ρ).

By dividing this equation by (18) we get

ξ−σY−σX−1 = ρXγ−1Y−1.

Therefore
ξ−σY1−σ = ρXγ.



After substituting (24) we obtain

(ρξσ)−1/γY (1−σ)/γ = ηα(1−ρ)A1−ρ
0 Yρ+α(1−ρ)

and hence
Y =

(
(ρξσ)1/γηα(1−ρ)

) 1
(1−σ)/γ−ρ+α(ρ−1) A

1−ρ
(1−σ)/γ−ρ+α(ρ−1)

0 . �

It is not difficult to notice that if (K∗t ,Y
∗
t ,C

∗
t , X

∗
t )∞t=0 is a solution to the problem

(3)-(5) at K0 = K∗0 and
Y∗0 ≤ A0(K∗0)α, (25)

then
Y∗t ≤ At(K∗t )α, t = 0, 1, ....

It follows from Lemma 3 that (25) can be rewritten as

(Y∗0 )1−α ≤ ηαA0,

or, equivalently, as(
(ρξσ)1/γηα(1−ρ)

) 1−α
(1−σ)/γ−ρ+α(ρ−1) A

(1−ρ)(1−α)
(1−σ)/γ−ρ+α(ρ−1)

0 ≤ ηαA0.

Since 0 < (1−ρ)(1−α)
(1−σ)/γ−ρ+α(ρ−1) < 1, there is an Ā > 0 such that (25) is true if and only

if A0 ≥ Ā. This completes the proof of the theorem.
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